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A diagonal of this 5x 7 rectangle passes through 11 squares.

These have been shaded in the diagram.

* Can you find a way of forecasting the number of squares passed through if
you know the dimensions of the rectangle?

* How many squares will the diagonal of a 1000 x 800 rectangle pass through?
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THE CHESSBOARD

* How many squares are there
on an 88 chessboard?
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(Three possible squares are

shown by dotted lines).

-

* How many rectangles are -
there on the chessboard?
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* Can you generalise your

results for an nXn square?
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* How many triangles are
there on this 8 X8 grid?

How many point upwards?

How many point down-
wards?

* Look for other shapes in this
grid and count them.
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THE SPIRAL GAME
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This is a game for two players. Place a counter on the dot marked “*|”". Now take
it in turns to move the counter between 1 and 6 dots along the spiral, always
inwards. The first player to reach the dot marked “y” wins.

Try to find a winning strategy.

Change the rule for moving in some way and investigate winning strategies.
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This is a game for 2 players.
Arrange a pile of counters arbitrarily into 2 heaps.

Each player in turn can remove as many counters as he likes from one of the
heaps. He can, if he wishes, remove all the counters in a heap, but he must take
at least one.

The winner is the player who takes the last counter.
Try to find a winning strategy.

Now change the game in some way and analyse your own version.
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“FIRST ONE HOME”’
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This game is for two players. You will need to draw a large grid like the one
shown, for a playing area.

Place a counter on any square of your grid.

Now take it in turns to slide the counter any number of squares due West, South
or Southwest, (as shown by the dotted arrows).

The first player to reach the square marked ““Finish” is the winner.

I
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PIN THEM DOWN!

A game for 2 players.

Each player puts counters of his colour in an end
row of the board. The players take it in turns to slide
one of their counters up or down the board any
number of spaces.

No jumping is allowed. The aim is to prevent your
opponent from being able to move by pinning him
to the wall.

SOSEEIRI
52520 IC0KN ~'~‘ »

Can you find a winning strategy?

IL
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THE ‘“HOT FAT TUNE” GAME

This is a game for two players.
Take it in turns to remove any one of the nine cards shown above.

The first player to hold three cards which contain the same letter is the winner.

Try to find a winning strategy.
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DOMINO SQUARE

This is a game for 2 players.
You will need a supply of 8 dominoes or 8 paper rectangles.

Each player, in turn, places a domino on the square grid, so that it covers two
horizontally or vertically adjacent squares.

After a domino has been placed, it cannot be moved.
The last player to be able to place a domino on the grid wins the game.

For example, this board shows the first five moves in one game:

.

(It is player 2’s turn. How
can he win with his next
move?)

Try to find a winning strategy.
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THE TREASURE HUNT

This is a game for two players.

You will need a sheet of graph paper on which a grid has been drawn, like the
one below. This grid represents a desert island.

1000

500 w—g}e

0 500 1000

One player “buries” treasure on this island by secretly writing down a pair of
coordinates which describes its position.

For example, he could bury the treasure at (810,620).

The second player must now try to discover the exact location of the treasure by
“digging holes”, at various positions.
For example, she may say “I dig a hole at (200,200)”.

The first player must now try to direct her to the treasure by giving clues, which
can only take the form:

“Go North”, “Go South”, ““Go East”, “Go West”, or “Go South and East” etc.
In our example, the first player would say ‘“Go North and East”.

* Take it in turns to hide the treasure.
*  Play several games and decide who is the best ‘“‘treasure hunter”.

*  How should the second player organise her “hole digging” in order to
discover the treasure as quickly as possible?

*  What is the least number of holes that need to be dug in order to be sure of
finding the treasure, wherever it is hidden?

|
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NOTES ON MARKED SCRIPTS

Script A
Emma In part (iii) Emma was awarded only 1 mark out of 2 since her answer did
not explain clearly that she had added the numbers from 1 to 11.

In part (iv) she was given 1 mark out of 2 as her answer showed evidence of a
systematic approach although it was incomplete.

Script B
Mark In part (i) Mark’s answer was correct and although no working was shown
he was given both marks.

Although Mark’s diagram for part (ii) is correct, there are three errors in
his solution. He should have had 66 cubesx4+12 and, in addition, his
calculation of 45X4+11 is incorrect. He was given 1 mark out of 4.

Script C

Ian Ian has misunderstood the question and assumed the tower to have a
hollow middle.
In part (i) his answer is therefore wrong and he gets no marks.
In part (ii) he has made two errors: he assumed the tower has a hollow
middle and has 13 layers. He was therefore given 2 marks out of 4.
In part (iii), his explanation of his calculation is not complete and so he
scores 1 mark out of 2.

In part (iv) his answer is not correct and scores no marks.

Script D

Colin  In part (ii) Colin has made two errors in multiplication for h=11 and h=12.
Since each answer has been worked out independently using c=hXw only
the error in =12 need be penalised. So Colin scores 3 marks out of 4.
In part (iii) he scored both marks for a clear, complete and correct
explanation of his method.
In part (iv) the three formulae on the left hand side are correct and
sufficient to solve the problem, although they are not organised
systematically. He was therefore awarded 1 mark out of 2.

Script E

Peter  Inpart (ii) there is some doubt as to how Peter has worked out his answer. It
may be that he has attempted to build onto the original tower and
calculated the number of extra cubes needed but has forgotten to add on the
66. We are giving him the benefit of the doubt by taking this view although
this may mean a slightly inflated mark. He was awarded 3 marks out of 4 for
part (ii).

In part (iii) his explanation of his method is not very clear and he was
awarded 1 mark out of 2.

Script F

Paul Paul’s answer is of a very high standard. He was awarded 10 marks out of 10
despite the algebraic error in the last part.
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SCRIPTF PAUL (continued)
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SCRIPTF PAUL
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SCRIPTE PETER
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SCRIPTD COLIN
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SCRIPTC IAN
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SCRIPT A EMMA (continued)

a fwer 4  hgh:-

v cr G hght-
EH_ Sx4% = 60 -6 = 66
H71
te “« S high-
0 x¢ = W +9 = yS
) ZthBj 3x¢ = L*¥3 =S
u v 1 a 1x¢y =4%+2 = 6

n Oxy = © =+ |

a4 tbe wll help me  h et paH‘ZrnS

hagnt of fwers || g}m, 114‘
0. of blocks yced. '(l)o Z(Z?*;@rg ' 27)&

differowe paern 5 "9 5 T AT

Tre diffrene ratten o e dfference pttrn = §. 1
haight of tower  himes, height of bowtr JagoF Hedes et = no of  blocks used Efopaﬁtm]

©Shell Centre for Mathematical Education, University of Nottingham, 1984
56 (163)



SCRIPTA EMMA
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SCRIPTF PAUL (continued)
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SCRIPTE PETER
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SCRIPTD COLIN
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SCRIPT A EMMA (continued)
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SCRIPTA EMMA
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SKELETON TOWER . . . MARKING SCHEME

)

(if)

(iii)

(iv)

Showing an understanding of the problem by dealing correctly with a simple
case,

Answer: 66
2 marks for a correct answer (with or without working).

Part mark: Give 1 mark if a correct method is used but there is an arithmetical
error.

Showing a systematic attack in the extension to a more difficult case.
Answer: 276

4 marks if a correct method is used and the correct answer is obtained.

Part marks: Give 3 marks if a correct method is used but the work contains an
: arithmetical error or shows a misunderstanding (e.g. 13 cubes in
the centre column).

Give 2 marks if a correct method is used but the work contains
two arithmetical errors/misunderstandings.

Give 1 mark if the candidate has made some progress but the
work contains more than two arithmetical errors/
misunderstandings.

Describing the methods used.

2 marks for a correct, clear, complete description of what has been done
providing more than one step is involved.

Part mark: Give 1 mark if the description is incomplete or unclear but
apparently correct.

Formulating a general rule verbally or algebraically.

2 marks for a correct, clear, complete description of method.

Accept “number of cubes=n(2n—1)" or equivalent for 2 marks. Ignore any
errors in algebra if the description is otherwise correct, clear and complete.

Part mark: Give 1 mark if the description is incomplete or unclear but shows
that the candidate has some idea how to obtain the result for any
given value of n.

Haow
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SKELETON TOWER

(i) How many cubes are needed to build this tower?
(i) How many cubes are needed to build a tower like this, but 12 cubes high?
(iii) Explain how you worked out your answer to part (ii).

(iv) How would you calculate the number of cubes needed for a tower n cubes
high?
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A TREASURE HUNT PROBLEM

This is a game for two players.

The diagram below represents an island, and each dot represents a possible
location for some buried treasure. (In this case there are 30 possible hiding
places).

3

2

1 23 456 7 8 910
One player has to guess the location of the treasure, and the other has to provide
a ““clue” after each guess, which can only be of the following kind:

After the first guess, the clue is either ““‘warm” or ““cold’’ according to whether
the treasure is located at a neighbouring point or not. -

After each succeeding guess, the clue is either “‘warmer”, “colder”, or ‘“‘same
temperature’’, depending on whether the guess is closer to, further away
from or the same distance from the treasure as the previous guess.

The aim is to discover the treasure with as few guesses as possible.

* In the sample game shown below, the first guess, G1, was (8,3). The clue

given was ‘‘cold”, so the treasure is not on any neighbouring points (shown

witha ).
2 .. . . . .00 o)
1 g .

1 23 456 7 89 10
The second guess, G2, was (8,1) . . .
Show that, wherever it is buried, the treasure can always be located with
a total of 5 guesses (including G1 and G2). Is this the minimum number?

* Now try to find the minimum number of guesses needed for a different

grid . ..

*

What is the best ““‘guessing’ strategy?

L
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