
Analyses ZDM 2006 Vol. 38 (2)
 

 178

Modelling in Mathematics 
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Abstract: This paper describes the development of 
mathematical modelling as an element in school 
mathematics curricula and assessments.  After an 
account of what has been achieved over the last 
forty years, illustrated by the experiences of two 
mathematician-modellers who were involved, I 
discuss the implications for the future – for what 
remains to be done to enable modelling to make 
its essential contribution to the "functional 
mathematics", the mathematical literacy, of future 
citizens and professionals.  What changes in 
curriculum are likely to be needed? What do we 
know about achieving these changes, and what 
more do we need to know?  What resources will 
be needed?  How far have they already been 
developed?  How can mathematics teachers be 
enabled to handle this challenge which, 
scandalously, is new to most of them?  These are 
the overall questions addressed. 
The lessons from past experience on the 
challenges of large-scale of implementation of 
profound changes, such as teaching modelling in 
school mathematics, are discussed. Though there 
are major obstacles still to overcome, the 
situation is encouraging. 
 
ZDM-classification: D30, M10 
 
The last 40 years have seen the explicit teaching 
of modelling with mathematics move forward, 
from small-scale explorations, through 
developments in typical classrooms, to established 
courses, albeit in a small minority of mathematics 
classrooms worldwide. Two kinds of student 
learning activity are essential for mathematics to 
be functional in everyday life and work: 

learning illustrative applications and standard 
models; 

active modelling by students, using 
mathematics to tackle problems that are 
new to them. 

There are now some examples of well-engineered 
materials to support both activities.  However, 
there are important gaps.  We need to know more 
about how best to enable all teachers of 
mathematics to acquire the extra mathematical 
and pedagogical skills needed to teach modelling.  
Further, while policy makers regularly stress the 
importance of students "being able to use their 
mathematics", their actual policy decisions rarely 
support effective ways to bring this about.  This 
paper will review the current situation and outline 
a programme for further progress.  
 
1.  Modelling with mathematics 
 

For this issue of ZDM, I do not need to describe 
the processes of modelling in detail; it is common 
ground.  However, discussion of the nature of 
modelling and its role, both in mathematics and in 
mathematics education, is often oversimplified.  
For mathematics education this arises partly 
because the dominant intellectual influences on 
school mathematics have come from pure 
mathematicians.  Understandably, they regard it as 
'their subject'; yet their attitudes to mathematics 
differ fundamentally from the far greater number 
of those who use mathematics in life and work, as 
citizens or as professional users of mathematics in 
engineering, science, economics and other fields 
where mathematics is a key language.  These all 
see mathematics as primarily a powerful toolkit to 
help them understand and solve problems from 
the real world.  That will be the perspective of this 
paper.  While the 'pure' and 'applied' viewpoints 
have many things in common, including delight in 
the elegance of mathematics, they differ in others 
that are important for the design of school 
curricula – notably the central importance of 
teaching modelling. 
To bring out the aims of modelling in 
mathematics education, I will begin with personal 
views on modelling as an activity from two 
mathematician-modellers who work in 
mathematics education, Henry Pollak1 and myself.  
These comments reflect our different experience 
of 'doing mathematics', but illustrate the attitudes 

                                                      
1  I am grateful to Henry, not only for his substantial 
contributions to this paper through 'private 
communications' but for illuminating discussions on 
the subject over many years. 
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to mathematics we seek to develop in students, 
and the adults they become.  

HOP: My problem has always been that I like 
too many different areas of mathematics. As an 
undergraduate at Yale, I liked everything, but 
particularly analysis and topology of the old-
fashioned point-set kind, and any combinatorics 
and number theory I saw, even though we had 
almost no courses in those kinds of areas. My 
enjoyment for topology came from Ed Begle. 
Of course, that isn't the way you get a doctorate 
– there you have to find a hole and dig and dig 
until it's yours and yours alone. I went to 
graduate school at Harvard, where I thought that 
I could do more topology with Hassler Whitney 
– but he soon left and I got into Complex 
Variables, and did a thesis in Geometric 
Function Theory with Lars Ahlfors.  I also 
worked on a Navy Contract under Stefan 
Bergman in the Engineering School during most 
of my time there.  In my last year of graduate 
work, I taught.  
When it came time to find a job, it was clear to 
me that, even though everybody said that you 
were going to be paid to do good teaching, don't 
let anybody kid you – you were really going to 
be paid for your research.  I thought that was 
kind of dishonest. A recruiter from Bell 
Laboratories came by and I went to see him. He 
made it clear that if I were going to be hired, it 
would be to do research, and that sounded good. 
I was probably the first mathematician hired 
there in a long time who was trained as a pure 
mathematician.  But it worked out OK.   
Alongside helping with various people's math 
problems, mostly in classical analysis, I started 
working in the area of balancing and optimizing 
a defensive missile system.  I made a simplified 
mathematical model of it, which in retrospect I 
know now was a dynamic programming model.  
I didn't know about Richard Bellman's work (I 
don't even know if that came earlier); I therefore 
didn't know that nobody ever solved dynamic 
programming problems analytically – and so I 
did just that.  Bell Labs appreciated it.  
I also learnt that I wasn't supposed to write 
papers as tersely as possible, in math journal 
style; I was writing for people who could use 
the understanding and techniques I might have 
developed, and how I got there.  So I learnt to 
take the time to document it in such a way that 

they could understand all of that – another link 
to teaching.  
Bell Labs in its heyday was full of interesting 
people, with exciting things going on.  
Everybody was encouraged to talk to everybody 
else. The most interesting things I did might 
come from anywhere – from a specific practical 
question, or from some idea in the atmosphere 
that seemed not to be fully understood. Broad 
interests and good communication were at the 
heart of it all. 
HB: My perspective on modelling comes both 
from my experience in using mathematics in 
tackling diverse problems from everyday life 
and from my university experience as a 
theoretical physicist – we are all modellers, 
particularly in forefront fields of physics like 
my own, elementary particles, where there is no 
established theory2.  
Even where there is an underlying theory that is 
true, the complexity of a system may make it 
insufficient.  Turbulent flow of liquids and 
gases is a classical example where you cannot 
calculate directly the consequences of Newton's 
Laws; you have to build models.  Quantum 
mechanics provides others.  It works well for 
atoms, where there is a heavy central nucleus 
with a large dominant electric charge around 
which the light electrons move, essentially 
independently. Neither of these conditions 
applies inside nuclei; though quantum 
mechanics applies there too, there is no 
dominant centre and the particles interact 
strongly with each other.  This situation makes 
the calculations too complex for current 
methods. Nuclear theorists developed a set of 
models, each of which accounts for important 
features of the data; however, their assumptions 
seem contradictory.  The 'Shell Model' assumes 
that the particles move independently around a 
common force centre, as in an atom.  How can 
this  be  so?  Yet it explains  the quantum  states 

                                                      
2 A theory is a model that has been shown to work well 
across a well-defined field of phenomena: Newton's 
Laws of Motion, or Gravitation, or Maxwell's 
Electromagnetic Theory, Darwin's Theory of 
Evolution, and Quantum Mechanics are giant 
examples; there are many more limited theories – of 
gas pressure, circulation of the blood, or elasticity, for 
example – effective within smaller well-defined 
domains of phenomena. 
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found in light nuclei.  In contrast, the 'Liquid 
Drop Model' treats the nucleus as a liquid with 
every particle interacting strongly with its 
neighbours alone; this works well for some 
properties of heavy nuclei. The reconciliation of 
these and other apparently incompatible models 
is an interesting story – but it is not for here.  
The point from our perspective is that limited 
precision and inconsistency are characteristic of 
modelling in all fields, profound or familiar, 
abstract or concrete.  Economics is equally full 
of different perspectives that fit some features of 
the system but not others; the inconsistencies 
stimulate deeper analysis.  People seek models 
that seem promising to explain features of the 
data, but they are often incomplete.  When 
Watson and Crick were trying to work out the 
structure of DNA, Franklin's X-ray pictures 
suggested to them a helical structure.  They then 
experimented with various wire models of the 
molecular structure (literal modelling, indeed) 
until they found one that would reproduce that 
X-ray data and fit the laws of chemical bonding.  
Their creation-discovery of the double helix 
model has been a beacon of scientific research, 
and medical advance, ever since but, though the 
essence of the structure was correct, there were 
complexities in the way it works that stimulated 
decades of further modelling by molecular 
biologists. 

How does all this relate to everyday life problem 
solving of ordinary people – to the student 
wondering whether she should go to university or 
straight into employment, for example?  The 
parallel is direct.  There is no single formula that 
will provide the answer.  There are various factors 
and perspectives.  She may choose to compare 
estimates of lifetime earnings – graduates earn 
more but start later.  She will have to balance 
short and long term issues – her immediate need 
for money against investment in the future.  What 
will it cost to take time out to look after children, 
and what help will the state (or her family) 
provide?  Over and above these important aspects 
are her quality of life considerations.  Does she 
want to study?  What does she think of various 
long-term plans she might consider?  Can she 
keep the freedom to change her mind at each 
stage, and at what cost? 
Many people see the complexity of a problem 
they face, and simply make a 'gut decision'; more 
effective thinkers do the analysis first – and then 
make a 'gut decision'. This means modelling.  

Even for complex problems like this, simple 
models can illuminate the analysis.  Learning to 
model, as with all high-level skills, begins with 
relatively simple analysis and builds from there. 
In summary, learning to model with mathematics 
is at the heart of learning to do the analysis that 
guides understanding and sensible decisions.  
What does it involve?  Figure 1 shows an early 
version (Burkhardt 1964, 1981) of the now-
familiar modelling diagram.  It has some features 
that are not always shown – the simplification and 
improvement loops which reflect the discussion 
above, and the duality of the phases of the 
modelling process and the states of the problem. 
Of course, like any other such diagram, this is a 
simplification of the modelling process.  
Particularly for skilled modellers, modelling 
actually involves 'look ahead' and 'look back' 
interactions between the different phases – they 
do not want to formulate models that they can't 
solve (though sometimes they find they have to). 
Treilibs et al (1980) give a more detailed analysis 
of the formulation phase that illustrates this – but 
it, too, is still a simplification.  However, this does 
not mean that these 'models of modelling' are not 
useful.  They provide insights and a structure that 
helps people to monitor their problem solving as it 
proceeds – or gets frustrated3. 

                                                      
3  Here, as so often, choosing the right 'grain size' for 
analysis is important – one can look in too much detail. 
In understanding gas pressure, for example, it does not 
pay to look at every molecule's motion.  In planning a 
nation's economy, it does not help to look at each 
individual buying decision. 
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Figure 1 

 
2.  Current mathematics curricula 
Everyone has been modelling with mathematics 
from an early age. Children estimate the amount 
of food in their dish, comparing it with their 
siblings' portions.  They measure their growth by 
marking their height on a wall.  They count to 
make sure they have a “fair” number of sweets. So 
school mathematical education has much to build 
on, should it choose to do so.   
This informal modelling continues as people grow 
older. They learn to check their money before 
going into a shop, and check their change.  As 

adults, they may plan their finances and the layout 
of furniture when they move house.   
There are examples of children spontaneously 
using their school mathematics in more 
sophisticated ways. Figure 2 (from Burkhardt 
1981) was produced by one 8-year old to show the 
'spending money' of children in his class – and to 
persuade his parents that he should have more. He 
succeeded. 
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Figure 2 
 
But, like Moliere's Bourgeois Gentilhomme, who 
was surprised to learn he had been talking "prose" 
all his life, people do not recognise this activity as 
modelling – indeed the term is still not widely 
used, even by mathematics teachers. (In everyday 
life, "modelling" usually implies the 'catwalk', not 
the calculator; in early school it is usually creative 
work with clay.) This lack of awareness might not 
matter if school education built on this informal 
foundation, continuing to develop students' ability 
to use their mathematics for understanding and 
solving practical problems of concern to them.  
However, most school mathematics curricula fail 
to deliver this or, with older students, even to 
address it.  If you doubt this, ask some adults who 
are not in jobs that use mathematics 
professionally: 
When did you last use some mathematics that 
you were first taught in secondary school? 
Why is this?  There are various factors: 

• Deferred gratification Some argue that 
you must learn a lot of mathematics 
before you can use any; this is simply not 
true – young children, before they reach 
school, use counting effectively in 
tackling practical problems.  Constantly 
delayed payoff is, of course, 
demotivating. 

• Imitative learning  Most school 
mathematics curricula are fundamentally 
imitative – students are only asked to 

tackle tasks that are closely similar to 
those they have been shown exactly how 
to do.  This is no preparation for practical 
problem solving or, indeed, non-routine 
problem solving in pure mathematics or 
any other field; in life and work, you meet 
new situations so you need to learn how 
to handle problems that are not just like 
those you have tackled before.  

• Inward-looking mathematics curricula 
Curriculum design in mathematics is 
mainly driven by people whose core 
interest is in mathematics itself, not in its 
use. Where applications are introduced, 
their purpose is to illustrate and reinforce 
the mathematical concepts and skills 
being taught.  Such illustrative 
applications are important but they are 
not enough to enable people to use their 
mathematics autonomously to tackle 
practical problems as they arise; for this 
they need to model practical situations, 
choosing and using appropriate 
mathematics from their whole 
mathematical toolkit – not only the topic 
they are currently being taught.  

 In contrast, 'own language' teaching is 
outward-looking – students learn to read, 
comprehend and write in many genres, 
from poems and stories to reasoned 
arguments and job applications. 
Mathematics education should learn from 
this.  

The reason that mathematics has such a large 
proportion of curriculum time, historically and to 
this day, is its perceived utility in solving 
problems from outside mathematics4.  
Historically, it was enough for mathematics to 
equip people with the routine skills of calculation 
for bookkeeping, surveying, and like occupations; 
these skills would give them a lifetime of 
employment. Nowadays, all these basic skills can 
be bought as IT devices for $100 or less; a 
mathematics education costs ~$10,000, which is 
hardly a good investment for this purpose alone.  
Further, there is now a need for a much wider 

                                                      
4 Why does mathematics have much more curriculum 
time than, say, music? 
 Is it more intellectually demanding? 
 Does it give more satisfaction to people?   
Hardly. 
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range of mathematical thinking.  For this the 
higher-level skills that develop the power and 
flexibility to tackle new problems is crucial 
because, in a rapidly changing world, no school 
curriculum could cover what will be needed.  
In summary, there is no point in educating human 
automata; they are losing their jobs all over the 
world.  Society now needs thinkers, who can use 
their mathematics for their own and for society's 
purposes.  Mathematics education needs to focus 
on developing these capabilities.   

3.  Learning to model with mathematics 
What kinds of learning activity do students need 
to build their ability to use their mathematics in 
tackling problems from the real world?  There 
have been three major influences in answering 
this question through the design of modelling 
elements in curricula: 

professional applied mathematicians in various 
fields, notably physics, who became interested 
in the teaching of mathematics in colleges and 
in schools; they often worked with teachers in 
professional development5; 
work on teaching heuristic strategies for non-
routine problem solving, in pure mathematics 
(Polya 1945, Schoenfeld 1985), in the Artificial 
Intelligence community (see e.g. Newell and 
Simon 1972), and in modelling itself. 
political pressure for schools to produce  
mathematically literate adults. (Quantitative 
Literacy, Functional Mathematics, and 
Numeracy are among the other terms used; 
Steen 2002, Burkhardt, Muller et al 2006 
discuss these developments) 

From these influences, the following types of 
student learning activity have been in the frame 
from the beginning: 

modelling experience in tackling a range of 
practical problems using mathematics, without 
prior teaching on closely similar practical 

                                                      
5 The UK is unusual in having a strong element of 
applied mathematics in secondary school curricula, 
essentially due to Newton and largely unchanged since.  
It is based on a set of models of standard situations in 
Newtonian Mechanics; it does not include non-routine 
problems or, therefore, active modelling. 

situations – ie problems involving greater 
transfer distance6; 
instruction on strategies for modelling, a set of 
heuristics built around variants of Figure 1; 
analytical discussion by students of alternative 
approaches to a problem, and reflection on the 
processes involved. 

These ingredients still remain central.  How to 
engineer them into effective curricula is the still-
unfinished story of the last 40 years. By now there 
is a well-developed understanding of the key role 
of modelling and applications in a balanced 
mathematical education, and some high-quality 
exemplification of how this can be realised in 
practice.  To get a view of the progress, compare, 
for example, the well-developed examples 
reported through the sequence of ICTMA books 
(ICTMA 1982-) with the unrealised vision of 
Burkhardt (1981).  
It is instructive in looking ahead to review the 
development so far. The ICTMA books and the 
recent ICMI Study 10 (Blum et al. 2006) give a 
broad perspective.  They also show that, in many 
cases, the teaching of active modelling was more-
or-less overwhelmed by the teaching of models – 
applications that the students were asked to learn 
rather than formulate themselves.  
 

1960-80 Explorations    
This period was characterised by tentative 
explorations of teaching modelling in both 
England and the US, partly stimulated by the 
worldwide movement for reforming mathematics 
education as a whole.  Much of this work was 
individual rather than a coherent program and, 
though instructive, was not published. To give 
something of the flavour of this period, I shall 
again give two views, anglo-centric but compact, 
that serve to bring out the general points we need. 

HB:  My involvement in teaching modelling 
happened essentially by accident. I had an 
"Emperor's New Clothes" moment in an applied 
mathematics course for serving high school 
teachers that I had been asked to lead at 
Birmingham University in 1962-63.  It was 

                                                      
6 Transfer distance is a measure of how different two 
problems are; however, the interesting but challenging 
problem of inventing a robust practical measure of 
transfer distance has not been seriously tackled, let 
alone solved. 
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meant to complement a course for teachers by 
the pure mathematicians Peter Hilton and Brian 
Griffiths, then very active in school curriculum 
reform.  That first year my colleagues and I 
taught a fairly conventional review of the 
Newtonian Mechanics that formed about half of 
the A-Level7 mathematics course for 16-18 year 
old students.  As the course went on, I became 
increasingly concerned that the standard 
approach lacked a vital element – explicit 
consideration of the modelling involved. In the 
following year, I included a modelling 
component with a much wider range of 
problems including, for example: 

On Owning a Used Car 
How old a car should you buy, and when 
should you sell it? 

This interested the teachers, and later the 
undergraduates to whom I taught modelling.  
They explored the various costs – depreciation, 
repairs, fuel, etc – and chose to look, 
graphically, for a minimum total cost per year.  
The Newtonian Mechanics in the course now 
looked at the consequences of alternative 
assumptions to those behind the standard 
models: ladders leaning against walls; 
projectiles; weights on strings over pulleys; and 
so on.  Over subsequent years, with both 
teachers and undergraduates, I developed a set 
of rich problems, some as open as  

How do we make friends? 
From 1965 on, David Wishart and I developed 
an undergraduate course on Broad Spectrum 
Applied Mathematics (Burkhardt and Wishart 
1967). It includes both standard models and 
active modelling in various fields - physics, 
population dynamics, economics, industrial 
control, game theory, arms races, as well as 
everyday problems.  This course enabled 
mathematics students to make an informed 
choice among final year courses in other 
academic departments.  As often happens with 

                                                      
7  In England, specialisation begins early – at age 16.  
Students normally choose just three A-Level subjects, 
each of which takes a quarter of their time for the last 
two years of high school. Many students who choose 
humanities take no mathematics after age 16. No fewer 
than seven UK government commissions since 1945 
have each recommended moving to a broader 
curriculum (more like the Abitur or baccalaureate) – 
but the situation remains much the same today.   

new enterprises, the early cohorts of students 
did outstandingly well, and in all subjects.  Also 
characteristically, students said that they that 
were spending much more time on this course 
than on others! 
In the 1960s, there was a wider momentum in 
England to make undergraduate curricula less 
imitative, particularly through substantial 
investigative projects in the final year.  These 
began in computer science, flourished in 
statistics and applied mathematics, then moved 
into pure mathematics.  Ron McLone introduced 
modelling projects into third year undergraduate 
mathematics at Southampton University (see 
also Andrews and McLone 1976). 
In the 1970’s at Nottingham University, there 
was a sequence of developments.  George Hall 
developed a pioneering course called   
‘Information Theory’ – a few weeks of lectures 
on this topic from a modelling perspective led 
into a major modelling project on a topic of the 
student's choice.  The topics chosen were 
varied, the quality of the student reports high, in 
some cases outstanding. When I moved to 
Nottingham in 1976, I started teaching 
modelling as the first unit in the basic 
undergraduate course called Differential 
Equations, starting with On walking in the rain.  
The characteristic of these courses is that they 
came and went with the innovators.  University 
faculty in UK universities have considerable 
freedom in what they teach; this makes 
experiment easy, but institutionalisation of 
successful innovations difficult, and rare.  The 
breakthrough came from a different source – the 
UK polytechnics.    
HOP: The launch of Sputnik in 1956 gave rise 
to national concern about the state of US math 
and science education. When in the winter of 
1957-58 Ed Begle and Al Tucker started the 
School Mathematics Study Group (see SMSG 
1958-72) as part of the growing "New Math" 
movement, they both knew me and decided to 
invite me to the first summer writing session. I 
found writing school mathematics so that it 
made sense surprisingly challenging! 
For the next 25 years, I spent 10 to 15% of my 
time on math education.  Bell Labs didn't object 
- they even promoted me, twice, so I guess it 
was OK by them.  It got to where I was Director 
of Mathematical Research at Bell Labs, and 
Chairman of SMSG's Advisory Board at the 
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same time. The only trouble was that I had to 
wear these two distinct hats on the same head.  
How in the world was mathematical modeling at 
Bell Labs consistent with trying to present 
school mathematics in an understandable 
fashion? SMSG was too pure for lots of critics8, 
and yet I thought it was doing the right thing, 
and yet I thought my job of doing and fostering 
mathematical modeling was doing the right 
thing!  Over time I came to see that these can be 
reconciled: 

In mathematics one emphasises 
understanding of when and how and why 
the mathematics works.   
In applications, one correspondingly insists 
on understanding the real situation being 
analyzed, and on understanding the process 
of getting from the real situation to the 
mathematics that – one hopes – become a 
useful model. 

I also knew that there was an awful lot more to 
applications than mathematical physics, circuit 
theory and the like.  Two of the largest areas of 
mathematics in the Bell Labs Mathematics 
Research organization were not taught to 
engineers, or to almost anybody else, in our 
universities.  They were, ones which had 
enormous usefulness to a lot of parts of the 
telephone business: Discrete Mathematics, and 
Exploratory Data Analysis. It is interesting that 
some data analysis techniques which I saw 
being invented at the research level when I first 
came to Bell Labs (for example, box plots and 
stem-and-leaf plots) are now being taught in the 
elementary school!  And, boy, do they ever help 
you to model the real world!  
In the first major development of modelling 
curriculum, Earle Lomon, an MIT Physics 
Professor who, like me, had been at the 1963 
Cambridge Conference on School Mathematics, 
turned a vision into Unified Sciences and 
Mathematics in Elementary School (USMES 
1969) It was developed, with funding from the 
National Science Foundation, by a team at EDC 
that he led. I was on the USMES board. For 
students from ages 8-11, it supported a series of 
extended class projects built around open 
problems on subjects like Planning the 
footpaths in your district, or Welcoming a new 

                                                      
8  e.g. (SMSG 1962) begins elementary school with 
sets. 

family to the neighbourhood. The children 
analyzed the situation, developed whatever 
mathematics, science and social science, was 
needed, and ended with a recommendation for 
action by appropriate authority. A great deal of 
modelling was involved, though it was not 
called that.  Student response, both in learning 
and motivation, was outstanding, but USMES 
proved very demanding on teachers. (A study of 
the background of USMES teachers found that 
"drop-out Art teachers" handled USMES best – 
mathematics teachers were among the worst)   
An amusing sidelight:  USMES, as part of its 
total curriculum packages, developed "How 
to.." cards, outlining new and potentially useful 
mathematics concepts and skills.  They needed 
new simple data analysis techniques, and I 
persuaded a couple of my Bell colleagues to 
write something for USMES for this purpose – a 
first step in moving Exploratory Data Analysis 
into education?  
The strategic design of USMES reflects a 
general point. It was able to achieve impact by 
the ingenious observation that there were no 
fixed expectations for elementary school science 
in the USA. Nobody knew what elementary 
science really meant, and no secondary science 
relied on anything having happened before.  So 
there was a niche there to be occupied, at least 
temporarily.  We wanted to progress into junior 
high school; there were excellent reasons for 
going in that direction, but it never got off the 
ground.  The ownership of time at the secondary 
level was far too rigid.  You couldn't get time 
from math, or from conventional science, or 
from social studies, or from English (all of 
which were seriously, though not equally, 
involved in solving USMES problems). 
Following USMES I was associated in various 
ways with a series of modelling developments. 
The second round of SMSG had a chapter on 
modelling but, coming as the reaction to the 
"New Math" began, it did not have much 
impact.  
I feel I was one of the creators of a later project 
– Mathematics: Modeling our World (COMAP 
1997-8), the high school textbook series 
developed by the ARISE project in the 1990s. It 
is very much a realization of my dreams for 
modeling in the schools, but well quenched with 
a bucketful of cold water reality of what one 
could actually do.  (One of my favorite ideas 



Analyses ZDM 2006 Vol. 38 (2)
 

 186

was the development of logarithms from the 
attempt to model the notion of information. It 
was moved from grade 9 to 10 to 11 to 12  to 
"You can do it in college sometime.". I now 
teach it at Teachers College as part of a course 
on applications of mathematics in engineering 
and science.)  The ARISE curriculum is 
challenging to teachers, both in the skills it 
demands and its outward-looking attitude to 
mathematics.  It is not widely used but it is 
valuable in exemplifying a way of building 
mathematics around applications. 

These two sketches aim to give something of the 
flavour, and excitements, of the period.  Other 
explorations of how modelling might be 
introduced into school mathematics were 
happening in various forms and places around the 
world, notably Australia and the Netherlands.  
The growth of computer education in schools was 
another lively area – students were writing 
programs, often in BASIC, that were explicit 
models of practical situations but, again, there was 
little explicit focus on the modelling process.   
1980-2000  Establishing exemplar courses  
From 1980 onwards, the international movement 
for the teaching of modelling was established, and 
steadily gained momentum.  A rich pattern of 
developments gradually emerged.  The story can 
be followed in more detail in the books (ICTMA 
1982-) arising from the ICTMA conferences, a 
continuing biennial series which David Burghes 
launched at Exeter in 1981.  These played a 
central role in establishing communication among 
the international community of innovators in the 
teaching of modelling, and applications in general. 
Here we can mention only a few developments 
that still seem important. 
The annual Undergraduate Mathematics Teaching 
Conferences (UMTC 1976- ) brought together 
each year innovators in teaching mathematics 
from across UK higher education to share their 
experience and, often, frustrations at the 
conservatism of their home departments. 
Modelling became a major theme in these 
conferences. 
In the UK during the 1980s some polytechnics 
established modelling courses.  This development 
is worth describing since it has lessons for the 
still-unsolved problem of establishing an 
innovation like modelling as a long-term element 
in   the  curriculum.   Polytechnics  did  not  award  

their own degrees but those of the Council for 
National Academic Awards (CNAA), which had 
to approve all courses.  The CNAA Mathematics 
Panel supported modelling initiatives and later, 
crucially, decided that all polytechnic 
undergraduate courses in mathematics must have 
a modelling component in all three years.  This 
institutionalised modelling in this sector in a way 
that, as far as I know, has not yet happened in 
mathematics curricula elsewhere. The ICTMA 
books illustrate the major contribution to the 
development of the teaching of modelling that 
people in these institutions have made.  The 
polytechnics have since become universities, and 
now have the freedom to design their own 
courses.  So far, modelling in mathematics seems 
alive and well.  In contrast, modelling is not part 
of the mathematics course at many other 
universities – including Nottingham where much 
of the exploratory development took place. 
There were important developments in this period 
in the US at high school level (Pollak 2003 gives 
more detail). COMAP, which had produced the 
UMAP sequence of undergraduate applications 
modules, developed For All Practical Purposes 
(COMAP 1988), a problem-based set of 
modelling examples from a wide range everyday 
life and professional fields. Among many 
memorable examples is one on alternative voting 
systems – each of five systems gives a different 
winner from the same set of preference choices.  
Building on this, NSF funded the ARISE project, 
referred to above, as one of a set of mathematics 
curricula based on the NCTM Standards.  The 
goal here was to teach a lot of new mathematics, 
particularly for modern fields of application, so 
standard models are used as illustrative 
applications – but there are also regular 
opportunities for active modelling by students. 
Meanwhile in England, the Shell Centre team was 
inspired by USMES to develop an integrated 
scheme of teaching and assessment based on 
modelling projects.  We sought to reduce the 
considerable challenge to teachers through an 
unusual and carefully engineered design that gave 
teachers more explicit support without detailed 
guidance to the students on particular solution 
paths. Working with the Joint Matriculation 
Board, a major examination provider, the team 
developed five three-week modules of teaching 
and assessment on Numeracy through Problem 
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Solving9 (Shell Centre 1987-89).  The style and 
range of problems is indicated by the titles: 
Design a Board Game, Produce a Quiz Show, 
Plan a Trip, Be a Paper Engineer, and Be a 
Shrewd Chooser. As well as embedded individual 
assessment of Basic level performance, there were 
final examinations at two levels, Standard and 
Extension, which assessed the student's ability to 
transfer their understanding to less- and more-
distant situations respectively. The design team 
was led by Malcolm Swan, who had earlier 
designed The Language of Functions and Graphs 
(Swan et al 1986), which pioneered the 
introduction to UK curricula and examinations of 
these modelling techniques. 
Numeracy through Problem Solving was later 
adapted as an alternative "syllabus" in the 
Mathematics GCSE, the standard high-stakes 
examination for 16-year olds. As so often with 
innovations, it disappeared later almost by 
accident – as an incidental consequence of a 
general government decision to standardise 
syllabuses. 
2000+ Large scale impact?  Where are we now? 
A variety of 'proof of concept' courses,  some 
outlined above, have been developed.  However, 
the large-scale impact of modelling on 
mathematics curricula at every level remains 
modest at best. The remainder of this paper is 
concerned with why this is, and what we might do 
to move forward. 
 
4. Making modelling a reality in 

mainstream curricula  
The problem of making modelling, or any 
substantial innovation, a reality in every 
classroom is far from solved, even when there is 
support at policy level. The challenge is always 
underestimated by both governments and the 
professional leadership; they tend to assume that 
once "difficult decisions" have been taken, 
implementation is straightforward. This is far 
from true – classroom outcomes in line with the 
goals are very difficult to achieve. This should not 
be surprising, since such innovations usually 
demand profound changes in the well-grooved 

                                                      
9  Numeracy was originally defined in a British 
Government Report (Crowther 1959) as "the 
mathematical equivalent of literacy".  It is now often 
used to mean just "skill in arithmetic". 

day-by-day professional practice of many people.  
(Typically, about 1% of the population in 
developed countries teach mathematics) In this 
and the following sections, we will review the 
challenges to the large-scale introduction of 
modelling and how they may be tackled. History, 
as outlined above, suggests that achieving 
substantial large-scale change will not be easy – 
and that underestimating the challenge will 
guarantee failure. 

Some hopeful signs 
But first, I would like to note some positive 
features of the current situation, which will 
certainly help progress in the future: 

• Mathematical Literacy is now a new, 
stronger focus of attention at policy level 
in many countries, aimed at ensuring that 
school mathematics is functional at a 
practical level for all adults.  

• PISA The OECD Program for 
International Student Assessment in 
Mathematics (PISA 1999, 2003) is 
focussed on mathematical literacy, with 
items in the tests that all seek to reflect 
problems in the real world.  They have a 
significant modelling demand.  The 
results are now getting political attention, 
at least comparable to the 'purer' TIMSS 
tests, ensuring that students' ability to 
model with mathematics will be important 
at policy level.   

• Information Technology, spreading 
slowly in classrooms, removes much of 
the drudgery from modelling reality – 
long calculations, collecting and handling 
data, etc.  It is also at the core of both 
mathematics and modelling in the real 
world.  However, introducing IT presents 
major challenges to school systems, 
outlined below. 

What are the tough challenges that offset these 
hopeful signs? We will now briefly review the 
main ones. 

Learning and teaching mathematical modelling 
Teaching modelling needs a wider range of 
teaching strategies than most teachers use in 
delivering the essentially-imitative curriculum that 
dominates classrooms in most countries.  Why?  
What additional skills does a teacher need to 
acquire in order to enable their students to learn to 
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model with mathematics? How do we get 
curricula that develop them? We address these 
key questions in turn. 
Skills beyond 'basic'  As we have seen, 
modelling involves all the key aspects of ‘doing 
mathematics’ which may be summarised (see e.g. 
Schoenfeld 1992) as: 

knowledge of concepts and skills  
strategies and tactics for modelling with this 

knowledge 
metacognitive control of one's problem 

solving processes  
disposition to think mathematically, based on 

beliefs about maths as a powerful 'toolkit' 
(rather than just a body of knowledge to 
be learnt). 

These are not, of course, independent elements 
but must be integrated into coherent modelling 
practices for tackling whatever problem is at 
hand. 
Richer learning activities  For learning these, the 
main classroom elements that are seldom found in 
traditional curricula are: 

active modelling with mathematics of non-
routine practical situations; 

diverse types of task, in class and for 
assessment; 

students taking responsibility for their own 
reasoning, and its correctness; 

classroom discussion in depth of alternative 
approaches and results; 

teachers with the skills needed to handle 
these activities. 

These imply a profound change in the classroom 
contract, the set of mutual expectations between 
teacher and students as to their respective roles 
and actions (see Brousseau, 1997). Table 1 
(Burkhardt et al, 1988) illustrates the necessary 
role changes: 
 
for imitative learning 
Directive roles 
Manager 
Explainer 
Task setter  
    
with students as 
Imitator  

for modelling, add 
Facilitative roles 
Counsellor 
Fellow student 
Resource  
 
 with students as 
Investigator 

Responder 
 

Manager  
Explainer 

Table 1. Teacher and Student Roles 
 
Broader teaching strategies  What extra skills do 
teachers need to make this a reality?  The key 
elements here include: 

• handling discussion in the class in a non-
directive but supportive way (see e.g. 
Swan et al. 1986, inside back cover), so 
that students feel responsible for deciding 
on the correctness of their and others' 
reasoning and do not to expect either 
answers or confirmation from the teacher; 

• giving students time and confidence to 
explore each problem thoroughly, 
offering help only when the student has 
tried, and exhausted, various approaches 
(rather than intervening at the first signs 
of difficulty); 

• providing strategic guidance and 
support without structuring the problem 
for the student or giving detailed 
suggestions (see e.g Shell Centre 1984, 
inside back cover); 

• finding supplementary questions that 
build on each student's progress and lead 
them to go further. 

This is challenging at first, but teachers who 
acquire these skills continue to use them.  Well-
engineered materials can provide enormous 
support to teachers and students who are engaging 
in learning modelling.  Such materials are 
essential for most teachers in their first few years 
of such teaching, if they are to succeed.   
It is not surprising, given this brief summary of 
the key elements in learning and teaching 
modelling, that it has been difficult to achieve in 
most classrooms. However, these are probably not 
the core reasons, which are systemic; we shall 
discuss them in the next Section. But first, brief 
comments on two issues of importance for 
curriculum design – mathematics and technology. 

What mathematics do students need? 
Almost the whole of pure mathematics, however 
apparently abstruse, has proved useful for solving 
problems in some field of practical importance.  
The use of prime number theory in encryption of 
internet messages is but one of a host of well-
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known examples.  Nonetheless, students cannot 
learn everything at once so a priority order is 
helpful.  It should reflect accessible power over 
real world problems rather than the priorities of 
mathematics itself, when these are different. Here 
a few examples must suffice. 
Some neglected topics are particularly powerful; 
many, including spreadsheets and programming, 
are linked to technology.  This reflects the 
practical importance of the discrete mathematics 
of numbers, compared to the continuous 
mathematics of quantities, which currently 
dominates curricula beyond the elementary 
school. Algebra remains the key to higher 
performance, in modelling as in so much 
mathematics; however, aspects that are crucial for 
modelling, particularly the formulation of 
algebraic models, are hardly touched in many 
current curricula, which focus elsewhere – mainly 
on solving given equations.  Geometry, too, needs 
a change of emphasis for modelling – with more 
emphasis, for example, on design.  Statistics and 
probability are essential in thinking sensibly about 
many practical problems. 

Technology – core and curse  
On the one hand, technology is at the heart of the 
modelling enterprise.  Hardly anyone does any 
modelling, on however simple a topic, without 
using some technology,  if only a calculator.  
Spreadsheets provide invaluable support for 
setting out analytic structures, exploring changes 
in assumptions and values, checking calculations 
by alternative routes, and so on.  Any modelling 
course that does not use such resources is out of 
touch with the real world – not uncommon in 
school curricula, of course, but crucial here.  
On the other hand, technology presents great 
problems for large-scale implementation of 
curriculum and assessment, largely because of the 
mismatch of timescales between technological 
change (~2 years) and educational change (~10 
years).  This produces variations in time and space 
of hardware and software provision, and in 
teacher familiarity with its capabilities.  One can 
achieve a lot with a simple calculator; one can 
achieve far more with more sophisticated current 
technology, provided one has absorbed its 
capabilities - and developed a curriculum that will 
enable teachers to realise them in the classroom. 
This presents a dilemma for school systems. 
Various compromises have been tried; all have 
problems.  Limiting the technology to what is 

universally available holds back progress, of 
individuals and of the system.  On the other hand, 
assuming that all useful resources will be 
available will disadvantage the many who don't 
have them.  A wide range of provision presents 
huge problems in selecting the tasks that students 
can tackle at different levels; only very open 
tasks, or those where technology doesn't help, 
qualify.  This is too restricting.   
This dilemma is most acute in the design of high-
stakes examinations, where 'fairness' is 
understandably seen as essential.  Further, in 
systems with such examinations, the implemented 
curriculum in most classrooms is largely focussed 
on what is tested, so the issue must be faced.   
A modular approach, where there are parallel 
modules of curriculum and assessment built 
around different levels of technology provision 
can work well – for example, algebra with 
graphing calculators, with spreadsheets, with 
programming (or with none of these).  But this 
brings even more complexity to the already-
challenging change process.   
These problems seem likely to remain with us, but 
further imaginative work, backed by well-
engineered materials for teaching and assessment 
will help, at least, to mitigate the difficulties. 
On a more optimistic note, equipping every 
student with a wireless laptop computer of their 
own, for use at all times, could provide a plateau 
of provision that is adequate for most things in 
school.  It could also revolutionise teaching and 
learning, though the curriculum development 
challenge will be enormous.  It is an irony that the 
"one-laptop-one-person" initiative (OLPC 2005), 
intended for the developing world, may provide 
this universal "$100 laptop" fairly soon – but only 
in prosperous countries. 
 
5. How do we get there? 
The need for students to learn to model with 
mathematics is widely accepted. There are now 
well-engineered exemplars of how this can be 
achieved in schools. Why then do we not have 
modelling as an integral part of mathematics 
curricula worldwide?  This key problem requires a 
discussion of education systems and the dynamics 
of the change process within them.  Though there 
is, of course, variation between systems, many of 
the major challenges to large-scale 
implementation of innovations are common. 
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Barriers and levers 
I will now look at some of systemic barriers to 
large-scale implementation of modelling.  These 
four examples, though important, are mainly to 
illustrate the mode of analysis.  Discussions with 
'change agents' who are working to forward 
reform programs of all kinds reveal both the 
barriers they face and, with a few, some 
successful experience in tackling them.  
Successful approaches can then be developed so 
as to be useful to, and usable by, others.  Such 
discussions also help to motivate the development 
of further useful tools that support reform. 

Barrier 1:  Systemic inertia 
To put in perspective the limited large-scale 
implementation of modelling, we should note that 
it has proved difficult in most countries to 
establish any profound innovation in the 
mainstream mathematics curriculum. Compared 
with, say, a home or a hospital, the pattern of 
teaching and learning activities in the mathematics 
classrooms we observe today is remarkably 
similar to that we, and even our grandparents, 
experienced as children.  The EEE style of 
teaching (Explanation, worked Examples, 
imitative Exercises) still dominates, as does the 
focus on learnt facts, concepts and skills.  
Learning activities that require less directive 
teaching styles, notably "higher-level thinking" in 
all its forms including modelling, remain rare, 
along with the increased student autonomy 
implied.  
This is an important observation because it is easy 
to underestimate the challenge of large-scale 
implementation – to assume, reasonably it seems, 
that, if something is recognised as "good" and 
"important", it will naturally be taken up as part of 
the mainstream curriculum.   
Rather we should recognise that we need to 
change: 

• habits – the well-grooved day-to-day 
practice of large numbers of 
professionals; 

• beliefs – the expectations of parents, 
politicians the public, and mathematics 
teachers about what mathematics is, 
usually based on their own school 
experience; 

• teaching skills – the skill and knowledge 
base of teachers and teacher educators, 
outlined above; 

• power balance – within the subject peer 
group between "basic skills" v "problem 
solving", pure v applied, etc; 

It is understandable that that will require a 
powerful and coherent combination of pressure 
and support.   
Among the arguments used to resist the 
introduction of new elements like modelling, 
"There is no time" is common, powerful and, in its 
literal sense, valid.  In fact, many mathematics 
texts already contain far more material than can 
possibly be covered in the time available10.  While 
much time is currently wasted in repetition of 
exercises and revision of topics, that point is 
rarely persuasive on its own; any alternative must 
be explicitly shown to work in practice, which 
requires systematic development and evaluation.   
It is not always difficult to identify explicit 
elements for elimination. In one case, we found 
that "algebraic inequalities" were happily 
eliminated from an examination syllabus for 16-
year olds. The teachers on the committee were 
unanimous that "We teach it but they can never do 
it"; others agreed that this topic is not essential.  
The purpose was to liberate 3 weeks teaching 
time, and one examination question, for a 
modelling component. The general lesson that 
emerged is the need to be explicit in what is to be 
cut and how much time is freed for new material. 
Among the key levers for tackling resistance to 
change are curriculum descriptions, supported by 
well-engineered materials to support assessment, 
teaching, professional development and public 
relations (in the literal sense) that are well-aligned 
with the each other – and have been shown to 
work well in realistic circumstances of personnel 
and support.  Unless these tools and processes for 
their use are in place, modelling experiments, 
however successful in themselves, are likely to be 
evanescent, distorting back to the traditional and 
fading away with those who led them.   These 
things, and the process for improving their 
quality, will be discussed further below. 

                                                      
10 This is particularly true in the US where "adoption 
committees" decide which books can be bought with 
state funds.  Their list of requirements rarely takes 
account of time considerations so, to ensure that all the 
requirements are met, the books often contain three 
times as much material as can be taught in the time.  
The selection is then made by teachers who, naturally, 
tend to choose what is familiar. 
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Barrier 2:  The real world  
The real world is an unwelcome complication in 
many mathematics classrooms. The clean 
abstraction of mathematics is something that 
attracted many to teach mathematics, particularly 
at the higher levels. Teaching mathematics, they 
say, is demanding enough without the messiness 
of modelling reality. Further, the public, based on 
its own school experience, shares these beliefs 
about "proper mathematics".  Modifying their 
views is a necessary condition for progress.  What 
levers have we? 
Illustrative applications have long been used to 
provide both concrete embodiments of a new 
concept or skill, and illustrations of how it is used 
(there is some acceptance that utility is important).  
These are essential, but on their own not nearly 
enough – the problems will arrive pre-modelled. 
Another key lever with both teachers and students 
is student interest and motivation.  Most students 
find modelling courses more relevant to their lives 
than the mathematics they are used to – and more 
interesting.  Where well done, modelling is also 
more fun.  The performance across mathematics 
of some low-achieving students shows really 
substantial improvement – many have been 
'turned off' mathematics by its perceived 
irrelevance to anything that interests them.  
Teachers find such evidence persuasive, 
particularly from colleagues they know.  
However, such findings also need a firmer 
research base and good presentation, in general 
and in the context of each particular modelling 
course (see Barrier 4).  Some pure mathematicians 
will still find this unconvincing, indeed 
threatening. They protest "This will undermine the 
basics", ignoring the evidence that "back to 
basics" approaches actually lead to lower scores, 
even in the narrow tests usually used.  For them 
and the public at large we need other levers. 
Building public understanding of modelling and 
its central role in providing students with 
important skills is essential to progress.  It 
requires public relations tools built on the specific 
local changes for use in parents meetings at 
school, and with the community through the 
media, as well as with decision takers.  Here a 
small number of change agents in each 
community (of whatever size) can play a key role, 
as long as they have good tools to help them 
explain and exemplify.  (As we saw above, 
modelling became a core part of mathematics in 

the English polytechnics through influencing 
decisions of the then controlling body, CNAA.)  

Barrier 3:  Limited professional development 
In many countries teachers are expected to deliver 
a curriculum on the basis of the skills they 
acquired in their pre-service education, 
consolidated in the early years of classroom 
practice.  This approach may have worked well 
when the curriculum changed little during a 
teacher's career; it is clearly inadequate now.  
However, with notable exceptions like Japan, 
continuing professional development is not yet an 
integral part of teachers' day-to-day work.  
Elsewhere opportunities for professional 
development are often occasional and/or 
voluntary, taken up by a minority of teachers, 
usually those who need them least.   
Further, professional development programs are 
rarely developed with the kind of rigour and 
imagination that is expected in the development of 
assessment or teaching materials – or of products 
in other fields like medicine or engineering.  For 
example, it is rare that there is any effort to see 
whether teachers' classroom behaviour changes 
after taking part in the professional development 
program. Where this has been done, changes have 
often been undetectable.  This is not surprising, 
since the feedback with which such programs are 
evaluated and developed is focussed on whether 
the participants found the experience interesting 
and useful – not the same thing. Indeed many 
regard such research as intrusive and 
inappropriate; they see professional development 
as a civilised exchange between fellow 
professionals, who take whatever they find useful 
from the experience.  Yet knowing the classroom 
outcomes are surely crucial. 
This craft-based 'professional' approach ignores 
the obvious fact that, as with all skilled activities, 
teachers vary enormously in their range of skill in 
teaching, and that none of us are as aware of our 
limitations as we should be.  It is important to 
recognize these distinctions. if appropriate support 
is to be provided. I find it useful to distinguish 
virtuosi, craftsmen, labourers and incompetents.  
Too much attention has been misdirected – by 
professional leaders on virtuosi, and by politicians 
on incompetents; since both groups are relatively 
small, system performance depends on turning 
labourers into craftsmen, and helping these to 
continue to develop. 
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Levers are implicit in the above.  Time for all 
teachers, mainly as part of their working week, to 
work together, supported by tractable professional 
development materials and programs with specific 
goals which have been systematically developed 
and shown to enable people like themselves to 
achieve these goals in their own classrooms.  The 
relevance of this for teaching modelling is clear 
but many of the same teaching tactics and skills 
help achieve other widely accepted curriculum 
goals that involve non-routine performances – for 
example, problem solving in pure mathematics.  
They also support the long-term learning of 
concepts and skills. 
These last assertions need to be further researched 
and documented in a way that will be convincing 
to the proper audience for research – the positive 
thinking sceptic who advises policy makers. This 
brings us to Barrier 4. 

Barrier 4:  The role and nature of research and 
development in education 
Research and development in education, as 
compared with other applied fields, is not well 
organised for turning research insights into 
improved practice. Burkhardt and Schoenfeld 
(2003) looked at this process, and how it can be 
improved.  Here is the essence of the argument. 
In education there is an amalgam of three different 
research traditions – humanities, science and 
engineering, which are those characteristic of 
those different groups of departments within a 
typical university.   While the education research 
community favours empirical insight-focused 
science research, policy is still largely dominated 
by the humanities tradition of critical commentary 
with no empirical testing11. While good insight-
focused research of either kind identifies problems 
and suggests possibilities for progress, it does not 
itself generate reliable solutions that can be 
directly implemented on a large scale. To achieve 
that, research-based development and robust well-
tested models of large-scale change are both 
essential. This impact-focused engineering 
research tradition, with products rather than just 
papers as its key outputs, is still peripheral in 

                                                      
11 This dominance of "plausible argument" also 
warrants policy-makers reliance on their own 
"common-sense" views, in a way that would be 
unimaginable in other fields like, say, medicine, where 
research is taken more seriously. 

education.  (See Burkhardt 2006 and Schoenfeld 
2002, for more on these ideas.) 
In successful research-based fields of practice 
(e.g., medicine or the design and engineering of 
consumer electronics or communication devices) 
one finds: 

A. Well established mechanisms for taking 
ideas from laboratory scale to widely used 
practice.  Such mechanisms typically 
involve multiple inputs from established 
research, the imaginative design of 
prototypes, refinement through feedback 
from systematic development, and 
marketing mechanisms that rely in part on 
respected third-party in-depth evaluations.  

B. Norms for research methods and reporting 
that are rigorous and consistent, resulting 
in a set of insights and/or prototype tools 
on which designers can rely.  The goal, 
achieved in other fields, is cumulativity – 
a growing core of results, developed 
through studies that build on previous 
work, which are accepted by both the 
research community and the public as 
reliable and non-controversial within a 
well-defined range of circumstances. 

 C. A reasonably stable theoretical base, with 
a minimum of faddishness and a clear 
view of the reliable range of each aspect 
of the theory.   

D. Teams of adequate size to grapple with 
large tasks, over the relatively long time 
scales required for sound work of major 
importance. 

E. Sustained funding to support the research-
to-practice process on realistic time 
scales.  In other fields, substantial funding 
followed the public perception of 
practical impact. 

F. Individual and group accountability for 
ideas and products – do they work as 
claimed, in the range of circumstances 
claimed? 

In education, none of these is reliably in place, 
though the development of design research is a 
move in this direction.  The emphasis in 
educational research remains on small, neat 
studies of unavailable treatments that produce 
interesting insights of unknown generality; these 
are not an adequate basis for design or evaluation.   
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The international modelling community is 
equipped to move things forward. It has a body of 
successful exemplars that provide proof-of-
concept evidence that modelling can be made a 
practical large-scale classroom reality. It has the 
communication structure with which to share 
expertise, and build the case for the government 
support that will be essential to the further well-
engineered research and development that will be 
needed before large-scale introduction. The 
opportunity is there but the challenges remain to 
be overcome. 

Other barriers and levers 
These four are some of the important barriers that 
are regularly reported by people who have sought 
to introduce modelling, or other innovations 
involving higher-level strategic skills, into 
mathematics curricula.  Since the dynamics of 
curriculum change are not yet well understood, 
other barriers need to be recognised and clarified, 
and ways of overcoming them developed. 
The development of a broader range of tools for 
advancing the system changes that curriculum 
improvement requires is a substantial challenge 
that will require new design and development 
skills.  The traditional range of accepted tool types 
(mostly teaching materials and tests) is slowly 
being extended, as well as improved in quality.  
Materials that enable less experienced leaders to 
deliver more effective professional development 
is one growth area.   
The US National Science Foundation has funded 
the development of a Toolkit for Change Agents 
(http://toolkitforchange.org/) that looks 
holistically at the problem outlined in this section.  
What barriers do change agents come up against?  
How have others overcome similar barriers?  
What tools can help?  Where can they be found?  
If they do not exist, can they been specified and 
developed?  This Toolkit is designed to find 
examples of effective practice, and make the 
strategies and tools involved available to others in 
a form they can use.  This work is ongoing. 

Making progress 
The barriers to reform outlined in this section are 
formidable indeed.  However, the levers for 
forwarding improvements such as the teaching of 
modelling can be powerful.  Frontal assaults may 
not be the most effective way; progress is likely to 
depend on identifying and seizing opportunities 

for system change as they appear (as USMES 
identified elementary school science as an 
opportunity). The current political concern for 
mathematical literacy presents both an 
opportunity and a substantial challenge.  We will 
see what emerges around the globe. 
 
6.  The roles of assessment 
Finally, as an example of a set of tools for 
promoting change, I want to look a little more 
deeply at one key area, both of challenge and of 
opportunity – the high-stakes assessment for 
accountability that, in some countries, dominates 
the world of teachers and students.  Many 
innovators regard assessment as, at best, a 
regrettable necessity, but it also offers a powerful 
lever for advancing improvement.  Briefly, 
assessment provides a means of: 

A 'measuring' performance – assessing 
levels of performance of individual 
students in a domain, for one or more of a 
variety of purposes – to give formative 
feedback to improve teaching and 
learning, to guide decisions on future 
opportunities for the student, ….. and for 
teacher and school accountability to 
parents and government. 

If the results of an assessment have significant 
consequences (for students, teachers, or schools), 
such high stakes assessment inevitably plays two 
other roles: 

B specifying curriculum goals – 
identifying to teachers and their students, 
through the types of task in the tests and 
the scoring schemes, those aspects of 
performance in the domain that are seen 
by 'society' as important; and thus 

C driving teaching and learning – leading 
teachers to concentrate on those aspects in 
their teaching, at the expense of important 
aspects of performance that may be 
recommended  but are not tested. 

These last two points were summarised long ago 
as WYTIWYG ("What You Test Is What You 
Get").  This represents an opportunity rather than, 
as so often, a threat. 
Balanced Assessment is the term MARS (1995-
98) coined for tests which take B and C as 
inevitable, and accept the consequent design 
responsibility to ensure: 
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Curriculum Balance  Teachers who 'teach to 
the test', as most will, are led by the test 
design to provide an implemented 
curriculum in their classrooms that is 
reasonably balanced across all the goals 
of the intended curriculum. 

Learning Value  Because such assessment 
takes significant time, the assessment 
activities themselves should be useful 
learning activities.   

Professional development activities built around 
high-stakes assessment are unusually powerful, in 
that:  

• they are taken up by most teachers, not 
just the enthusiasts;  

• sessions built around a rich task bring out 
the core issues – of the subject, and of 
learning and teaching it – in a vivid and 
concrete form;  

• teachers at every level learn in a 
'constructive' way, generalising from 
specific experiences, that is both deep and 
closely tied to classroom practice.  

The development of tools to support these things 
will pay off in implementation, if and only if they 
are integrated in a systemic approach. 
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