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Summary 
This chapter describes and comments on the large qualitative differences between 
curriculum intentions and outcomes, within and across countries.  It is not a meta-analysis 
of research on international comparisons; rather the focus is the relationship between what 
a government intends to happen in its society’s mathematics classrooms and what actually 
does.  Is there a mismatch?  In most countries there is.  Why?  This leads us into the 
dynamics of school systems, in a steady state and when change is intended – and, finally, 
to what might be done to bring classroom outcomes closer to policy intentions.  Two areas 
are discussed in more detail: problem solving and modeling, and the roles of computer 
technology in mathematics classrooms.  
 
1. “Curriculum” and curriculum change 
The term “curriculum” is used with many different meanings.  In the US it often means a 
textbook series, in the UK the set of experiences a child has in school classrooms.  Neither 
of these fits the purposes of this chapter, which is concerned with the interrelations and 
differences between the variant definitions set out, for example, by the Second International 
Mathematics Study (Travers and Westbury, 1989).  I want to distinguish and compare the: 

“intended curriculum”: that described in official documents carrying the status of policy; 
“tested curriculum”: the range of performances covered by the official tests, particularly 

when the results have serious consequences  for students’ or teachers’ future lives;  
“implemented curriculum”: what is actually taught in most classrooms. 

The “achieved  curriculum”, what most students actually learn, would take us into much too 
large a field of research.  Other chapters address this. 
Thus the focus in this paper is on the path from government intentions, usually set out in 
policy documents, to the actual pattern of teaching and learning activities in classrooms – 
some typical, some that are unusually innovative.   
As always, studying the steady state tells you little about causation.  Accordingly, I look at 
two areas where there has long been general international agreement on the need for 
change in mathematics curricula: problem solving and modeling, and the roles of computer 
technology. I have benefited from special issues of the Zentralblatt für Didaktik der 
Mathematik, in which distinguished authors from around the world describe what has 
happened over recent decades to problem solving and to modeling in their own curricula1. 
 
2. Curriculum goals in mathematics 
Around the world people seem to have much the same goals for the outcomes of a 
mathematics education.  Students should emerge with a reliable command of a wide range 
of mathematical skills, a deep understanding of the concepts that underlie them, and an 
ability to use them, flexibly and effectively, to tackle problems that arise – within 
mathematics and in life and work beyond the classroom.  Students should, as far as 
possible, find learning and using mathematics interesting and enjoyable.  

                                            
1 My thanks to Kaye Stacey, Michel Doorman, Berinderjeet Kaur, Akihiko Takahashi and, particularly, Gabriele 
Kaiser, the editor of ZDM. 
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If all these “goods” were commonly achieved, mathematics education would be just an 
interesting academic field of study, rather than a centre of social concern and political 
disputation.  Far from that nirvana, we are still much closer to the historical picture of 
school mathematics.  100 years ago, there was good middle class employment for all those 
who could “do mathematics”.  Command of the procedures of arithmetic was enough for 
employment as a clerk or bookkeeper.  Command of algebra, a rare accomplishment, gave 
access to professions like engineering or teaching.  But in today’s world, those skills are far 
from enough; arithmetic is largely done with technology, while jobs in finance require 
higher-level skills involving analysis of data and of risks, using prediction based on models – 
hence the widely agreed goals summarized in the first paragraph. 
In seeking to get closer to these goals different groups have very different priorities – 
shown, for example, by the “as far as possible” in the sentence on student feelings about 
mathematics.  Indeed, one of the striking results from the Third International Mathematics 
and Science Study (TIMSS) is the anti-correlation between attitude and performance: East 
Asian students appear to combine high-achievement with a dislike of mathematics, stronger 
in both respects than those in lower-achieving countries2.  It is fair to say that student 
enjoyment of mathematics, while seen as desirable, if only for motivation, is rarely given 
high priority.  The next few paragraphs set out attitudes characteristic of various groups 
that promote their priorities for teaching and learning mathematics, more or less effectively.  
“Basic skills people” focus on the importance of students’ building fluency and accuracy in 
standard mathematical procedures, moving over time through the four operations of 
arithmetic on whole numbers, fractions and decimals to manipulating algebraic expressions.  
Calculators are for use in other subjects.  This group recognizes the ultimate importance 
and satisfaction of being able to use these skills in solving problems that arise outside the 
classroom but they are happy to defer this until the procedural skills have been “mastered”.  
For most students this gratification is deferred indefinitely.  This curriculum consists of 
routine exercises, supplemented by routine “word problems”.  “Basic skills people” cannot 
understand why students find these problems so difficult. 
“Mathematical literacy people” occupy the opposite end of the spectrum of priorities.  They 
see mathematics as primarily a toolkit of concepts and skills that, learned and used 
properly, can help people understand the world better and make better decisions. They 
want students to develop their mathematics with close links to real world problems.  They 
believe skills need to be rooted in solid conceptual understanding, so those that are not 
used every day can be refreshed when needed.  They accept the research evidence (see 
e.g. Brown and Burton, 1978) that successful performers do not remember precisely the 
procedures they have been taught but have the understanding to reconstruct and check 
them. Calculators and computers should be used freely. Understanding should be 
consolidated through concrete illustrations of the concept in action. This curriculum spends 
time on the development of modeling skills: formulation of mathematical models of new 
problem situations, transforming them to give solutions, the interpretation of solutions and 
of data, and explanation of what has been learnt. 
“Technology people” start from the way mathematics is done outside the classroom – with 
the unquestioning use of computing devices.  They believe that mental arithmetic is 
important for estimation but would only use pencil and paper for sketching diagrams and 
graphs, for formulating models, and for recording results.  They accept the research that 
shows that concepts can be learned faster and understood more deeply through carefully 
designed uses of technology.  They also believe that this research justifies the return of 
programming to the math curriculum. They, too, would focus curriculum on rich problem 
situations, particularly from the real world. 

                                            
2  This, like every other statement in this chapter, is a trend; it is not true for everyone in each group. 
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“Investigation people” focus on mathematical reasoning and see the beauty of mathematics 
itself as the main driver for students to develop conceptual understanding and reasoning 
skill.  They are less concerned with the real world, seeing the inexactitude of modeling as 
clouding that beauty.  Their curriculum is dominated by a rich variety of mathematical 
microworlds that students are led to explore, discovering properties of and patterns in such 
systems – from “odd and even numbers” through “the 10 by10 multiplication table” to non-
commuting algebras.  Skills are learned as they are needed and fluency built by their 
repeated use in diverse situations.  
There is general acceptance that each of these aspects of learning mathematics should have 
a place; the balance of the intended curriculum in each school system reflects the tensions 
among these groups.  Those mainly influenced by their own education tend to the first of 
the positions listed; more sophisticated thinkers about mathematical education tend to the 
later views.  
The curriculum areas that I will discuss are examples where the mismatch between policy 
intentions and what happens in most classrooms is stark.  “Problem solving” and “modeling” 
are suitable choices because, over many decades, the difference between declared 
curriculum intentions and the classroom outcomes has been not just large, but qualitative. 
“Technology” shows a striking double mismatch, both between aspirations and practice and 
between the real world and mathematics classrooms.   
 I will not discuss a universal priority area: the development of concepts and skills. Even 
here, there are mismatches: for example, all intended curricula recognize that conceptual 
understanding is important while, in contrast, learning procedural skills dominates in many 
classrooms.  These matters are discussed in other chapters.   
 
3. Problem solving and modeling 
I have chosen “problem solving” and modeling3 as the first area to study because for many 
decades these have been widely accepted goals for curriculum improvement in mathematics 
across much of the developed world.  The need seems unanswerable; yet, observing at 
random in classrooms in any country, one is unlikely to see students engaged in tackling 
rich non-routine problems requiring substantial chains of autonomous reasoning by the 
student.  In this section we outline something of the history in this area, looking for 
plausible explanations of the limited progress that has been made. 
3.1  What is problem solving? 
Why have I put “problem solving” in quotes?  Because, even within mathematics curricula, 
the phrase is used by different people with different meanings. At its most basic level it is 
commonly used for “word problems” that are intended to be routine exercises presented in 
the form of a sentence or two; such word exercises normally appear in the curriculum unit 
where the method of solution is taught.  I use “problem solving” in the very different sense, 
illustrated in Figures 1 and 24, that is now widely accepted in the international mathematics 
education community.  
This defines a “problem” as a task that is: 

Non-routine: A substantial part of the challenge is working out how to tackle the task. (If 
the student is expected to remember a well-defined method from prior teaching, the 
task is routine – an exercise not a problem) 

                                            
3  Modeling, the now-standard term for the use of mathematics in tackling problems from the world outside 
mathematics, uses the same practices as mathematical problem solving – plus a few more. 
4   These examples were developed by the Shell Centre/Berkeley Mathematics Assessment Project, see  
http://map.mathshell.org.uk/materials/index.php . The “expert tasks” under the “Tasks” tab epitomize 
problem solving.  Boomerangs , Figures 2 and 3, is from a MAP formative assessment lessonlesson on problem 
solving.  
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Mathematically rich:  Substantial chains of reasoning, involving more than a few steps, are 
normally needed to solve a task that is worth calling a problem. 

Well-posed: Both the problem context and the kind of solution required are clearly 
specified.  (In an “investigation” the problem context is defined but the student is 
expected to pose questions as well as to answer them; investigations are implicit in the 
following discussion)  

Reasoning-focused: Answers are not enough; in problem solving students are also 
expected to explain the reasoning that led to their solutions and why the result is true. 

 
 

 
Figure 1 

These properties make a problem more difficult than a well-defined exercise on the same 
mathematical content. So, for a problem to present a challenge that is comparable to a 
routine exercise it must be technically simpler, involving mathematics that was taught in 
earlier grades and has been well-absorbed by the students. Problem solving depends on 
building and using connections to other contexts and to other parts of mathematics. 
Various problem solving approaches to Boomerangs are shown in the samples of student 
work in Figure 3, two of which show students “inventing” standard graphical and algebraic 
approaches to linear programming5.  
From the above it will be clear that what is a problem depends on a student’s prior 
experience.  A problem becomes an exercise if the student has seen, or been taught, a 
solution.  Equally, some rich curricula regularly present as problems some tasks that will 
become exercises when new techniques are taught in later years.  For example, pattern  

                                            
5 None of the solutions in Figure 3 is fully correct and complete – a design choice that makes them a better 
stimulus for classroom discussion, because the students are put into a critiquing “teacher role”, which is more 
proactive than merely understanding someone else’s solution. The more sophisticated solutions are beyond most 
students’ problem solving at this level, but are there to show the potential of more powerful mathematics. 
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Figure 2 

 
Figure 3 
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generalization tasks like Table Tiles in Figure 1 become exercises if and when students have 
learned the “method of differences”.  Similarly, the Boomerangs task in Figure 2 becomes a 
straightforward exercise when you have been taught linear programming.   
 
3.2  Problem solving around the world 
In 2007 ZDM produced special issues (Törner, Schoenfeld and Reiss, 2007) in which 
contributors from around the world described the position of problem solving in their 
country’s curriculum.  The pictures presented were broadly similar.  Problem solving is 
recognized as an element that should have a substantial place in the mathematics 
curriculum but, in practice, it plays little or no part in the pattern of learning activities in 
most classrooms.  This subsection gives a flavour of my reading of the articles.  These 
extracts are no substitute for reading these rich pictures of history, research and practice. 
For England, Alan Bell and I offer a rather gloomy picture of a current situation, largely 
driven by the 1989 National Curriculum, which the then-government required to be based 
on “levels” described in terms of detailed content criteria.  Because the difficulty of a task 
depends on many factors, the wish to give students their best chance of achieving a higher 
“level” led inevitably (see Burkhardt 2009, section 2B) to testing the criteria in their 
simplest form - as short items on each criterion. Problem solving, still seen as important in 
principle, disappeared from the high-stakes public examinations and, consequently, from 
most classrooms.   
We noted some hope of improvement through recent changes in the National Curriculum 
with an emphasis on “key processes” and an explicit recognition that non-routine problems 
have various sources of difficulty, as listed above.  Improved examinations have now 
appeared in pilot form but performance on the problem solving tasks has been weak – not 
surprising since teachers have little experience in this area. The 1980s remain the high-
point for problem solving and modeling in England6, though even then implementation was 
patchy.  
From Australia, Clarke, Goos and Morony noted that the collaboration between states has, 
at various times, produced position statements that represent a form of national curricular 
consensus, including the view that  

‘‘Problem solving is the process of applying previously acquired knowledge in new and unfamiliar 
situations. Being able to use mathematics to solve problems is a major reason for studying 
mathematics at school. Students should have adequate practice in developing a variety of problem 
solving strategies so they have confidence in their use’’.   

And yet  
“video studies of grade 8 mathematics classrooms in Australia show little evidence of an active 
culture of problem solving.“   

Again the 1980s saw an outstanding development in problem solving through the VCE 
(Victoria Certificate of Education) school leaving examinations in Mathematics, which 
produced significant change throughout secondary schools (Clarke and Stephens 1996, 
Burkhardt 2009).   
Current examinations (addressing students at different levels) are innovative and of high 
quality, containing tasks that probe concepts and skills.  The lower level has a strong 
applications emphasis while all students have access to computer-algebra systems for part 
of the examination.  But the tasks are essentially routine. 
From the Netherlands, Doorman, Drijvers, Dekker, van den Heuvel-Panhuizen, de Lange, 
and Wijers present a similar picture.  
                                            
6 Equally, untll the 1950s the Geometry examinations for the highest achieving 20% of 16 year old students 
included proofs of standard Euclidean theorems, each followed by a non-routine application of the theorem – an 
example of solving problems with a well-controled “transfer distance”. 
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“As in primary education, problem solving in secondary mathematics education has only a 
marginal position. In the introduction to this paper, it has already been pointed out  that even an 
application and modeling-oriented curriculum  like the one for Mathematics A tends to standardize 
problem-solving tasks into routine assignments. The national examination does not encourage 
paying much attention to problem solving skills. Textbooks usually do not address problem solving 
as a result of examination demands, designing teacher and student proof activities, and the time  
need for designing problem solving activities.” 

They report some exceptional textbooks and initiatives outside the mainstream, such as the 
national  “Mathematics A-lympiad: “an experimental garden  for problem solving” 
(Freudenthal Institute 2010) which, in many schools, plays a role in the school-based 
component of national assessment.  Many mathematics tasks are set in more realistic 
contexts than in other countries. 
These authors make an important point – that, to stimulate and sustain problem solving in a 
curriculum, “an important challenge is the design of good problem solving tasks that are 
original, non-routine and new to the students.”  This is an ongoing challenge, at least until a 
population of tasks has been developed that is large enough for teaching them all to be an 
ineffective strategy (Daro and Burkhardt 2012). 
 
There are some interesting variations on the global trend sketched above. 
From Hungary, Julianna Szendrei paints a more encouraging picture, albeit a mixed one. 
The examination at the end of secondary schools includes a non-routine problem as one of 
seven tasks. This influences some secondary school teachers to include such problems in 
the classroom as well. Lower secondary teachers prefer to use routine problems in the 
classroom.  However, the government requires assessments at ages 10, 12 and 14 that 
contain problem solving as well. Though the results are not public, this motivates teachers 
to prepare children for problem solving.  
Problem solving in the culture of Hungarian teachers also involves an approach to teaching: 
“not to show routine problems directly but to hide them a little”. 

Let us prepare all the three digit numbers using the digits 2, 3, 5.  
Let us choose one of these numbers randomly. What is the probability of the event that the 
number will be odd?  

Almost all Hungarian teachers know how to teach in this way but only about 10 % of them 
will do so in their classroom.  
This looks rather like the picture from China, where Jinfa Cai and Bikai Nie write: 

“The purpose of teaching problem solving in the classroom is to develop students’ problem solving 
skills, help them acquire ways of thinking, form habits of persistence, and build their confidence in 
dealing with unfamiliar situations. Second, problem-solving activities in the classroom are used as 
an instructional approach that provides a context for students to learn and understand 
mathematics. In this way, problem solving is valued not only for the purpose of learning 
mathematics but also as a means to achieve learning goals.” 

They describe as typical the “teaching with variation” approach, in that the transition from 
routine problems is supported by gently increasing the transfer distance in various ways, 
including “… three problem-solving activities: one problem, multiple solutions; multiple 
problems, one solution; and one problem, multiple changes”7.   

“Situation. A factory is planning to make a billboard. A master worker and his apprentice are 
employed to do the job. It will take 4 days by the master worker alone to complete the job, but it 
takes 6 days for the apprentice alone to complete the job. Please create problems based on the 
situation. Students may add conditions for problems they create.  
Posed problems:  

                                            
7   The authors add “However, there is little empirical data available to confirm the promise of ‘teaching with variation’.”  
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1. How many days will it take the two workers to complete the job together?  
2. If the master joins the work after the apprentice has worked for 1 day, how many additional 
days will it take the master and the apprentice to complete the job together?  
3. After the master has worked for 2 days, the apprentice joins the master to complete the job. 
How many days in total will the master have to work to complete the job?  
4. If the master has to leave for other business after the two workers have worked together on 
the job for 1 day, how many additional days will it take the apprentice to complete the remaining 
part of the job?  
5. If the apprentice has to leave for other business after the two workers have worked together for 
1 day, how many additional days will it take the master to complete the remaining part of the job?  
6. The master and the apprentice are paid 450 Yuans after they completed the job. How much 
should the master and the apprentice each receive if each worker’s payment is determined by the 
proportion of the job the worker completed?”   

The picture presented here reflects an approach to teaching concepts and skills that can be 
found in other countries (see e.g. Swan 2006); it is a long way from the holistic problems 
exemplified in Figures 1 and 2. 
From Japan, Keiko Hino focuses on how ideals are reflected in approaches to lesson 
structure at a research level, partly reflected in lesson study, but reports on some evidence 
on its scale of implementation: 

“The TIMSS video study identified the lesson patterns as cultural scripts for teaching in Germany, 
Japan, and the US  (Stigler & Hiebert, 1999). They identified the Japanese pattern of teaching a 
lesson as a series of five activities:  reviewing the previous lesson; presenting the problem for the 
day; students working individually or in groups discussing solution methods; and highlighting and 
summarizing the major points (p. 79). Here, a distinct feature of the Japanese lesson pattern, 
compared with the other two countries, was that presenting a problem set the stage for  students 
to work on developing solution procedures. In contrast, in the US and in Germany, students work 
on problems after the teacher demonstrates how to solve the problem (U.S.) or after the teacher 
directs students to develop procedures for solving the problem (Germany).  This pattern, or the 
motto of Japanese teaching, has been called ‘‘structured problem solving’’ by Stigler & Hiebert.”   

School leaving examinations are replaced by entrance examinations, set by different 
universities, that vary in difficulty.  I find no suggestion that they involve non-routine 
problem solving.  
From Germany Reiss and Törner describe an active program of curriculum and professional 
development on problem solving and, particularly, modeling that is “work in progress”.   

“The situation in Germany now parallels that of the United States some years ago. Stanic and 
Kilpatrick (1989, p. 1) get to the point when stating: ‘‘Problems have occupied a central place in 
the school mathematics curriculum since antiquity, but problem solving has not. Only recently 
have mathematics educators accepted the idea that the development of problem-solving ability 
deserves special attention.’’ 

Finally, from the USA, as well as the implementation challenges, conflict over the intended 
curriculum has been a major factor.  In the “math wars” a politically active group from 
outside mathematics education demand a curriculum focused on students’ developing fluent 
manipulative skills. Alan Schoenfeld summarizes it thus: 

“What optimism one might have regarding the re-infusion of problem solving into the US 
curriculum in meaningful ways must come from taking a long-term perspective.” 

The recent widespread adoption of Common Core State Standards that emphasize 
mathematical practices featuring reasoning, problem solving and modeling gives some 
grounds for hope – but, given all the political and institutional barriers, not for holding one’s 
breath. 
In reviewing these extracts, it is notable that the countries that give the most optimistic 
picture of implementation describe a relatively unambitious form of problem solving. The 
“teaching with variation” problems from China, for example, are rather like the “exercises 
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with a twist that makes you think” that we see in England.  Problems like the examples at 
the beginning of this section, involving more substantial chains of problem solving and 
reasoning, are still rare.  
 
3.3  Problem solving: the challenges 
Why is this pattern the way it is?  What are the factors that impede the implementation of 
problem solving?   

Testing traditions have a role, at least in those countries that have high-stakes tests. 
These have a strong influence on what is taught and valued in classrooms.  Some 
people feel it is “unfair” to give students non-routine problems in tests, though 
evidence shows that score distributions for well-engineered tasks are similar to those 
for exercises.  Designing non-routine tasks, year after year, presents a challenge to 
examination providers that they are happy to avoid; it is much easier to recycle minor 
variants of standard problems. However, since many countries have no high-stakes 
tests, this cannot be the main factor in the absence of problem solving. 

Equity concerns play a role in most advanced societies.  “We must give all kids the best 
chance to reach high standards”.  Since ‘high standards’ are usually seen in terms of 
the mathematical content covered, this supports the focus on short routine exercises. 
Further, since this fragmentation obscures the meaning of mathematics, it does not 
help disadvantaged students whose parents may not pressure them into persisting 
with, to them, meaningless activities in pursuit of long-term goals. 

Difficulty Complex non-routine problems, which must be technically easier, make some 
people concerned that in problem solving “the math is not up to grade”.  They want 
students to be learning more techniques rather than “wasting time on stuff they already 
know”.  This issue is sometimes referred to as “acceleration” versus “enrichment”. 

Teaching challenges Handling non-routine problems in the classroom presents teachers 
with substantial challenges, both mathematical and pedagogical, that are not met in a 
traditional curriculum.  Concepts and skills can be taught in the standard “XXX” 
approach: explanation by the teacher or the book, a worked example, then multiple 
imitative exercises.  This teacher-centered approach cannot be used for problem 
solving, where students must work out their own approach to each problem. 

 Early materials to support teachers of problem solving simply provided teachers with 
some interesting problems and general guidance, based on the Polya (1945) 
“strategies” for problem solving. Schoenfeld (1985) showed that this is not enough; 
effective problem solvers need more detailed “tactics”, elaborating the strategies for 
specific types of problem.  For example, the strategy “Try some simple cases” is more 
powerful if you know what is “a simple case”: perhaps “low n” in pattern generalization 
problems, but “end games” in game problems.  More sophisticated and supportive 
materials have been developed over succeeding decades. We developed more powerful 
support for problem solving in “The Blue Box”  (Problems with Patterns and Numbers, 
Shell Centre 1984), the first package to integrate examples of examination tasks with 
teaching materials and do-it-yourself professional development materials for teachers.  
This approach proved popular and effective.  The sophistication of materials to support 
teachers in facing these challenges has developed over the last 30 years (see, for 
example, Swan et al 2011).  It is now fair to say that, as a field, we know how to 
enable typical teachers to handle non-routine problem solving in their classrooms. 

System change challenges and how they might be more effectively tackled will be discussed 
in Section 5 below. 
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3.4 Modeling: the further challenges 
Modeling justifies a separate coda to this section for three main reasons: it is the activity at 
the core of the utility of mathematics; its history has been rather different from that of pure 
mathematical problem solving; it is the focus of PISA, the now-dominant measure for 
international comparisons.   
 

 
 

Figure 4. The modeling process 
Modeling is problem solving that involves the processes, summarized in Figure 4, that are 
involved in taking the world outside mathematics seriously.  Real world problems are often 
messy – you can’t address everything. Part of the modeling challenge is to identify the 
features of the situation that you need to analyze, select the essential relevant variables, 
and represent the relationships between them with mathematics.  Only then will you have a 
well-posed mathematical problem to solve8.  The ability to interpret the solution and 
evaluate the model requires an understanding of the practical situation and the ability to 
select what data is most relevant, to collect and analyze it.  
All countries say that they want students to be able to use their mathematics in everyday 
life situations; yet the special issues of ZDM on modeling  (Kaiser, Blomhøj, and Sriraman, 
2006) present a kaleidoscopic picture of work in the community of innovators (see also 
www.ICTMA.net) but little on modeling in typical classrooms.  It is not unreasonable to infer 
that the situation is, at best, no better than for problem solving. 
This fits the picture from other sources.  For example, in ZDM Henry Pollak and I (Burkhardt 
with Pollak, 2006) report on the history of modeling in England and the US over the last 50 
years – from the diverse early explorations that we and others began in the 1960s, through 
the development of exemplar courses to the present day. We noted some hopeful signs: the 
growing awareness of the importance of mathematical literacy and the growth of PISA.  
Nonetheless, the impact in typical UK and US classrooms is minimal. 
What are the factors, beyond those listed for problem solving, that impede implementation?  

The real world is an unwelcome intruder in many mathematics classrooms. “I’m a math 
teacher, not a teacher of ….“9.The clean abstraction of mathematics is something that 
attracted many mathematics teachers, particularly at the higher levels. Teaching 
mathematics, they say, is demanding enough without the messiness of modelling 
reality. This attitude also reflects concern about their ability to handle other areas of 

                                            
8  The earlier examples, though they are related to practical problems, have been taken to this “well-posed” stage 
– the reason to call them problem solving not modeling.  
9 This contrasts with the attitude of teachers of English, who welcome the opportunity to link the technical and 
stylistic aspects of language with the student’s world. 
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knowledge,  at least with the same authority and control as for mathematics itself.  In 
modeling, there are rarely “right answers”. (There are wrong ones!) 

Concerns about getting and handling real data which require skills that are new to many 
mathematics teachers.  

The time modeling takes is a cause for concern for teachers facing curricula that are 
usually already too full.  While all problem solving involves a time-scale longer than the 
few-minute exercises that dominate in many classrooms, it is possible to work through 
some interesting well-posed problems in 15 minutes or so.  Modeling an interesting 
problem situation with attention to reality usually needs longer than this. 

Again, the 1980s was a high point, with successes like Numeracy through Problem Solving 
(Shell Centre 1987-89), which supported students modeling real life problems in group 
projects. 
 
4. Why “technology” remains peripheral 
Mathematics has long been done with microprocessor-based technology everywhere – 
except in the mathematics classroom. While a doctor from a century ago would be 
astonished and bemused in a hospital today, a teacher would be quite at home watching 
most current mathematics classrooms. 
In business, accounting, scheduling and stock control, not to mention checkout tills, are all 
computer-based. In industry, CAD-CAM systems are at the heart of design and 
manufacturing.  Most routine repetitive tasks are done by computer-controlled machines.  
In research, where it all began, computers are everywhere.  Why has school mathematics 
not changed to reflect this?  
In addition to the roles of technology in doing mathematics, the last half-century has seen 
the development of a huge range of educationally powerful software for learning 
mathematics.  The early efforts were behaviorist “learning machines”, building fluency 
through simple exercises with instant feedback (and built-in testing).  These “integrated 
learning systems” are still around, but the reinforcement they provide doesn’t help those 
many children whose conceptual understanding is somewhat “dis-integrated”.  In contrast, 
the variety of software designed as a supportive learning resource is impressive. Perhaps 
most important for stimulating learning are the “microworlds” that offer domains for 
investigation by students.   
The best known of these, because they cover a large domain, are the Euclidean Geometry 
programs:  Judah Schwartz’s Geometric Supposer, Jean-Michel Laborde’s Cabri Geometre, 
Nick Jackiw’s Geometer Sketchpad and their followers.  These enable an investigative 
approach to the learning of Euclidean Geometry in which the students play a much more 
active role than in the traditional learning of theorems and their proofs.   
There are many smaller investigative microworlds that simulate specific situations in 
mathematics or science.  From the late 1970s the British project ITMA, Investigations on 
Teaching with Microcomputers as an Aid, developed a wide range of such software.  
Rosemary Fraser’s Jane is a “function machine” that invites conjecture and the weighing of 
evidence; this work showed that the concept of function as a consistent input-output 
process is natural for children no older than seven, providing a natural route into algebra 
through functions. Richard Phillip’s Eureka is about a man taking a bath.  It links a cartoon, 
a 4-command programming language10 that controls the bath sequence, and a line graph of 
the depth of water against time.  A research program on teachers use of these and other 
classics showed their power (Burkhardt et al, 1988).  Teachers with little experience of 
handling non-routine problem solving in their classroom moved quite naturally from the 
                                            
10  T ~ tap on/off, P ~ plug in/out, M ~ man in/out, and S ~ sings/stops singing – because it is important to 
recognize that there are some variables that do not affect the quantity of interest, in this case water level. 
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traditional directive roles (manager, explainer, task setter) into the supportive roles that are 
essential for teaching problem solving (counselor, fellow student, resource).  The single 
computer screen took on some of the traditional roles, hence the “teaching aid” name for 
this mode of use. 
More familiar are computer game modes, some of which have significant mathematics 
content beyond behaviourist skills training.   
The mathematical software tools themselves can be used to promote learning.  
Spreadsheets and programming languages provide environments that help students explore 
problems, and learn to design algorithms for modeling the real world, and for investigations 
in pure mathematics.  As a curriculum element, such activities equip students with tools 
that will be used in life beyond the classroom. 
Why are these powerful tools for doing and for learning mathematics still only used in a 
small minority of classrooms in most countries? 
How effective these learning activities are depends on the teacher and, one would expect, 
on the textbooks that embody the intended curriculum.  This brings us to a big surprise: 
there are no published mathematics curricula that exploit the potential of technology.  Why?  
At least three powerful forces have contributed to this: cost, equity and, perhaps most 
important, mismatched timescales.  

Timescale mismatch:  The timescale of change for computer technology is short, with new 
devices appearing every few years; in contrast, curriculum changes take a decade or 
two from initial discussions to widespread implementation.11 

Cost: When a new technology is introduced, it is expensive12.  The cost of equipping every 
child in a class seems prohibitive.  As the price comes down, new technologies appear 
that offer much greater educational possibilities.  Each implies a substantial curriculum 
and professional development program, if teachers are to learn how to exploit its 
potential. 

Equity:  Students and school systems give a high priority to fairness, to trying to give all 
kids the same opportunities.  The challenge of equipping all schools in a short time 
makes it difficult for school systems to require any specific technology as part of the 
intended curriculum. 

And there is always conservatism.  While the importance of technology in mathematics is 
accepted at a rhetorical level, when it comes to deciding on the intended curriculum, 
politicians are reluctant to abandon traditional goals13.  Perhaps they find traditional values 
in education play well with electorates, particularly for mathematics where many parents 
feel insecure. “Look what it did for me.”  But is fluency in pencil-and-paper arithmetic still a 
sensible priority for children, particularly those who struggle?  In this sense, the mismatch 
for technology is different from that for problem solving and modeling in that, even in the 
intended curriculum, its place is far from clear. 
There are signs that the situation may be changing. The basic tablet computer is getting 
cheaper and offers a stable platform that can offer a very wide range of support for learning 
and teaching.  School systems are talking of “the post-textbook era” and publishers are 
responding by supporting the development of technology-based curricula. 
On the other hand, the timescale mismatch continues to present problems. Within a few 
years the focus has moved from laptops to tablets and smartphones.  The design 
                                            
11  For example, in the 1980s the National Council of Teachers of Mathematics developed “standards”, setting out 
curriculum goals, the National Science Foundation funded the development of curricula and assessment in the 
1990s, while substantial impact in classrooms began from 2000 onwards. 
12  The first 4-function calculator I used cost $450 ~ several thousand dollars in current money. 
13  Against the advice of the mathematics education experts, the British Government insisted on retaining fluent 
“long division” as an essential skill in the National Curriculum. 
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opportunities for any of these platforms are immense but they are rather different – and 
realising their potential will take many times longer than publishers’ deadlines usually allow.  
The fundamental challenge remains: to move school mathematics closer to the way math is 
done in the world outside.   Whatever happens next, this will remain an exciting area. 
 
5. Systemic change: failures and ways forward 
Why does this mismatch persist? Why are the activities in mathematics classrooms still so 
like those of a century ago?  I have listed some of the factors that help to explain.  In this 
section I will argue that the problems lie mainly at school system level, describe some 
important causes of failure in implementation, and suggest possible ways forward.  Key 
failures include: underestimating the challenge; misalignment  and mixed messages; 
unrealistic pace of change; pressure with inadequate support; inadequate evaluation in 
depth; and inadequate design and “engineering”.  A challenging list. 
These deep-seated problems, involving as they do multiple constituencies with well-grooved 
attitudes and modes of working, have no well-established solutions.  However, we know 
enough to set out a path that has real prospect of improving the convergence between 
intentions and outcomes.  In the following, I shall discuss each of them in turn. 
Underestimating the challenge   
When countries are concerned about education, there are intense and ongoing debates 
about what should go into the curriculum.  There is much less discussion as to how to get it 
to happen.  It is assumed that once the decisions have been made and a process of 
implementation specified, things will work out as intended14. Curriculum changes of the 
kinds discussed in this chapter involve fairly profound changes in the professional practice of 
many people across a range of constituencies: textbook writers, test designers, professional 
development leaders and, particularly, teachers.  All these need to be not just motivated 
but enabled to meet the new challenges.  Further, some may feel threatened, producing 
“pushback”, overt or covert, against the change.  To have a reasonable chance of 
realization, a change must have (at least) the consent of teachers, principals, curriculum 
directors, superintendents, the relevant professions, and the public.  Some groups, within or 
outside the school system, may disapprove of the change and work to undermine it – the 
US “math wars” being an extreme example15.  
 
Misalignment and mixed messages   
It is important to avoid mixed messages by ensuring close alignment of learning goals, 
curriculum, teaching materials, professional development support, and assessment.  A 
common problem arises when the curriculum intentions are broad and deep, the textbooks 
and professional development only partly reflect that, and narrow official tests have 
consequences for teachers or students.  It is not difficult to guess which message is likely to 
influence teaching most strongly. Yet it is common to ignore the effect of high-stakes tests 
on the implemented curriculum, seeing them as “just measurement”, and to underfund key 
elements, notably professional development. Progress will depend on enhancing awareness 
of the central importance of alignment and of the engineering needed to achieve it. 
 
Unrealistic pace of change   

                                            
14   As the Mathematics Working Group finished its design of the original 1989 National Curriculum in England, I 
asked a senior civil servant why we should expect it to happen; she replied “But it’s the law of the land”! 
15   Paul Black (2008) describes the process of consensus building across communities behind a successful 
curriculum innovation, Nuffield A-level Physics. 
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The design of an implementation program has many aspects that clearly need attention, 
including all those mentioned above.  One that is commonly ignored is the planned pace of 
change.  This is often grotesquely misjudged, again due to a mismatch of timescales.  
Politicians feel the need to be seen to “solve” problems – and before the next election. As 
we have seen, the timescales for the design, development and implementation of new 
curriculum elements, assessments and professional development programs are much longer 
than this.   
There is much to be said for an ongoing program of improvements of the kind that is seen 
as normal in other spheres of public policy: health care and the military, for example.  There 
are many advantages in the incremental introduction of small but significant steps that 
address major weaknesses in the curriculum.  Unlike “big bang” changes, this approach 
does not fundamentally call in question the established practice of the professionals, be they 
teachers, principals or the leadership of the school system.  Professional development can 
be focused on the few weeks of challenging new teaching and learning involved.  Most 
teachers find innovation on this scale stimulating and enjoyable; though many will be 
relieved to get back to the comfort zone of their established practice, they usually welcome 
the next increment when it comes along, six months or a year later. Most important, a 
qualitative change that is modest in scale can be done well, in contrast with major changes 
that so often degenerate back into “business as usual”.  (Burkhardt 2009) describes a 
successful example of this approach: the introduction of new task-types into a high-stakes 
examination, supported by teaching and professional development materials.  The materials 
came to be known as The Blue Box (Shell Centre 1984) and The Red Box (The Language of 
Functions and Graphs, Swan et al, 1985)16. They included exemplar test tasks, materials for 
the three weeks of teaching, and a do-it-yourself professional development package. 
Gradual change approaches have been used in various ways.  “Replacement units” have 
been used in California and elsewhere. The introduction of “coursework” into British 
examinations was of this kind: 25% of the examination score was based on student 
performances in class. Portfolio assessment was introduced in some US states.  It is 
important to note that these and other successful initiatives initiatives have often not 
survived, often for unconnected reasons arising from systemic changes. 
 
Pressure without support  
Pressure and support need to be balanced if improvement is to happen as intended.  That 
both are important is widely accepted but the amount of each is often determined by 
financial and political considerations that are not guided by likely cost-effectiveness.  
Normally pressure costs less than support, so “accountability” systems, largely based on 
tests, are a favourite tool of policy makers. Conversely, effective support systems normally 
involve teachers and other professionals regularly working outside the classroom on their 
professional development. 
Professional development support is recognized rhetorically as essential but implementation 
is almost always inadequate, constrained by politically-determined financial limits.  
Typically, a few sessions will be specifically funded, or it may simply be left to existing 
structures to fit new demands into their current programs, themselves usually inadequate.  
Yet the timescale for becoming an accomplished teacher of problem solving and modeling, 
or for learning about how to exploit the multiple opportunities that technology affords, is 
decade-long, with an ongoing need for professional development support.  
Regular time for professional development in the teacher’s week has financial and logistic 
implications.  The main cost of an education system is the cost of having a teacher in every 
                                            
16   The Blue and Red Boxes are still widely regarded as classics.  In 2008, one of the first “Eddies”, the $10,000 
prizes for excellence in educational design of the International Society for Design and Development in Education, 
was awarded to Malcolm Swan, its lead designer, for The Red Box. (The other went to an Editor of this book) 
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classroom, which reinforces the simplistic view that other activities are “time off” from a 
teacher’s job. To an administrator an hour a week is 4% increase in this major cost. 
Average class size, the complementary variable, is so controversial that a small increase to 
compensate for professional development time is rarely discussed17. 
In contrast to this attitude, “continuing professional development” for doctors is a 
requirement of their continuing license to practice, taken into account in financial planning.  
 
Evaluation in depth   
The standards for evaluation of the outcomes of interventions are abysmal. Curriculum 
materials are reviewed by inspection, only rarely using evidence on their effect on student 
learning and attitude.  Professional development programs are evaluated by the perceptions 
of those who took part, not on evidence of change in the teachers’ classroom practice – 
presumably the key goal.  Studies of effects on student learning often use tests that cover 
only a subset of the stated learning goals, usually using narrow state tests.   
In education, there are no equivalents of consumer magazines like Consumer Reports that 
test products systematically, let alone government bodies like the US Food and Drug 
Administration (FDA) or the British National Institute for Clinical Excellence (NICE) which 
evaluate medicines.  This reflects the limited acceptance that education can be a research-
based field.  Making it so depends on improving evaluation in both range and depth. 
This situation reflects various factors.  Studies in depth are expensive, involving observation 
and analysis of what happens in many classrooms, as well as the learning outcomes18.  Yet 
it is only such studies that provide a sound basis for choosing curriculum materials and, 
even more important, the formative feedback to inform for the next phase of improvement.   
Equally, there are not yet enough good instruments for such a program to provide a sound 
research basis for such judgments.  Broad spectrum tests of mathematical concepts, skills 
and practices, including problem solving, modeling and other forms of mathematical 
reasoning have been developed, but there is no accepted set that most studies use.  For 
professional development, we need better protocols for classroom observation and analysis.   
In the absence of better evaluation tools and methods, studies have fallen back on 
inadequate measures that are widely accepted for quite different purposes, usually 
accountability.  The evaluation picture for the NSF-funded curricula had to be pieced 
together (Senk and Thompson, 2003) from a large number of separate studies.  Together 
they gave a result that was fairly unambiguous, but not clear enough to command the 
acceptance it deserved.  The results on the widely accepted narrow tests were comparable 
with those from other curricula, but these tests did not assess the broader performance 
goals that were the raison d’etre for these curricula.  The studies that showed substantial 
gains on broad spectrum tests did not received the same attention, probably because they 
were fewer and the tests were “non-standard”. 
We need to go beyond this, to look behind the outcomes in depth at the range of what 
happens throughout the process, in classrooms, and in the associated professional 
development.  We need to know how the outcomes depend on the processes and the 
variables: students, teachers, school and district environments, and system structures.  This 
information will provide a sound basis for future development. 
 

                                            
17  Japan, where a substantial part of the teacher’s week is spent in lesson planning and lesson study, has larger 
classes. In the US and UK teachers and their unions are profoundly skeptical that the trade-off would be sustained. 
“They’ll cut the PD again after a year without reducing the class sizes.”  This exemplifies a whole set of other 
system issues. 
18   I estimate that a thorough evaluation of some NSF-funded curricula and some traditional comparators would 
require funding comparable to the original development program, roughly $100 million. 
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Design and “engineering”   
Realizing a planned curriculum change is an unsolved problem in most school systems; 
nonetheless, a lot is known about what to do and what not to do.  The smooth 
implementation of a substantial change in the curriculum requires a pathway of change for 
all the key groups along which they can move.  Ideally, all should feel that the change is, in 
a broad sense, in their interest; this limits pushback to outsiders – often formidable enough.  
A change program like this requires a well-engineered mixture of pressure and support on 
each of the groups involved, with the tools and processes that will enable all those involved 
to succeed.  This is clearly a major design and development challenge; it is rarely 
recognized as such.  
In a rational outcome-focused world, pressure and support should be developed with policy, 
with the goals matched with the resources available.  However, this is a constraint that, in 
education, politicians are so far unwilling to contemplate. As a result of the political sense of 
urgency, policy decisions on innovation are usually developed with some “consultation” but 
without either exploratory design or careful development. Viewed strategically like this, it is 
not surprising that few changes work out as intended. 
The last decade has seen the growth of a more organized community of professional 
designers in mathematics and science education, supported through the International 
Society for Design and Development in Education and its on-line journal Educational 
Designer.  However, as we have seen, much more remains to be done to raise standards –  
above all, policy makers’ awareness of the contribution that high-quality engineering can 
make to realizing their goals. 
 
In summary  
This chapter has argued that we know enough, and have the tools, to enable typical 
teachers with reasonable support to deliver a mathematics education for their students that 
is vastly better than most of them get currently.  That is good news.  Less encouraging is 
the evidence that the major problems in the way of implementation are at system level, 
involving the factors just described.   
Since design and development at system level is inevitably larger in scale than, for 
example, classroom studies, progress will require substantial commitment, probably at a 
political level.  History in other fields suggests (Burkhardt and Schoenfeld, 2003, Burkhardt, 
2006) that, while persuasion is important, large scale research funding will follow only from 
unmistakable examples of successful impact – like antibiotics in medicine or radar and 
operational research in military science.  Breaking out of this “chicken and egg” situation 
will require the creation, identification and trumpeting of successful examples like some of 
those mentioned above.  
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