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THE CLIMBING GAME

This game is for two players.

A counter is placed on the dot labelled “start” and the
players take it in turns to slide this counter up the dotted
grid according to the following rules:

At each turn, the counter can only be moved to an adjacent
dot higher than its current position.

Each movement can therefore only take place in one of
three directions:

~L

The first player to slide the counter to the point labelled
**finish” wins the game.

(i) This diagram shows the start of one game, played
between Sarah and Paul.

Sarah’s moves are indicated by solid arrows (———)
Paul’s moves are indicated by dotted arrows (- — -»)
It is Sarah’s turn. She has two possible moves.

Show that from one of these moves Sarah can ensure
that she wins, but from the other Paul can ensure that
he wins.

(i1) If the game is played from the beginning and Sarah
has the first move, then she can always win the game
if she plays correctly.

Explain how Sarah should play in order to be sure of
winning.
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SKELETON TOWER

(i) How many cubes are needed to build this tower?
(i) How many cubes are needed to build a tower like this, but 12 cubes high?
(iii) Explain how you worked out your answer to part (ii).

(iv) How would you calculate the number of cubes needed for a tower 1 cubes
high?

©Shell Centre for Mathematical Education, University of Nottingham, 1984.
5 (18)




STEPPING STONES

A ring of “‘stepping stones’’ has 14 stones in it, as shown in the diagram.

OO0
® O
O O
O O

O O
O @ O

start

A girl hops round the ring, stopping to change feet every time she has made 3
hops. She notices that when she has been round the ring three times, she has
stopped to change feet on each one of the 14 stones.

(i) The girl now hops round the ring, stopping to change feet every time she
has made 4 hops. Explain why in this case she will not stop on each one of
the 14 stones no matter how long she continues hopping round the ring.

(ii)) The girl stops to change feet every time she has made n hops. For which
values of n will she stop on each one of the 14 stones to change feet?

(iii)) Find a general rule for the values of n when the ring contains more (or less)
than 14 stones.

©Shell Centre for Mathematical Education, University of Nottingham, 1984.
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FACTORS

The number 12 has six factors: 1,2, 3,4, 6 and 12.
Four of these are even (2, 4, 6 and 12)
and two are odd (1 and 3).

(i) Find some numbers which have all their factors, except 1, even.

Describe the sequence of numbers that has this property.

(ii) Find some numbers which have exactly half their factors even. Again

describe the sequence of numbers that has this property.

Explain in both part (i) and part (ii) why your result is true.

©Shell Centre for Mathematical Edilcation, University of Nottingham, 1984.
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REVERSES

Here is arow of numbers: 2, 5, 1, 4, 3.

They are to be put in ascending order by a sequence of moves which reverse
chosen blocks of numbers, always starting at the beginning of the row.

Example:
1, 5, 2, 3
4, 1, 5, 2, 3 reversingthe first 3 numbersgives 5, 1, 4, 2, 3
2, 4, 1, 5

2, 5, 1, 4, 3 reversing the first4 numbers gives 4,

b

5, 1, 4, 2, 3 reversingall5numbersgives 3,

b

1, 2. 3, 4, 5

(1) Find asequence of moves to put the following rows of numbers in ascending

order

(a) 2, 3, 1

(b) 4, 2, 3, 1

(¢) 7, 2, 6, 5, 4, 3, 1

(i) Find some rules for the moves which will put any row of numbers in
ascending order.

©Shell Centre for Mathematical Education, University of Nottingham,>‘1’98.4.
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INTRODUCTORY PROBLEMS

These are different kinds of problem to those you are probably used to. They do
not have just one right answer and there are many useful ways to tackle each of
them. Your teacher is interested in seeing how well you can tackle these
problems on your. own. The methods you use are as important as the answers
you get, so please write down everything you do, even if you are not sure it is
right.

1 Target

On a calculator you are only allowed to use the keys

131 ] [x]J = =]

You can press them as often as you like.
You are asked to find a sequence of key presses that produce a given number in
the display. For example, 6 can be produced by

3x4—-3-3= )
(a) Find a way of producing each of the numbers from 1 to 10. You must “clear”
your calculator before each new sequence.

(b) Find a second way of producing the number 10. Give reasons why one way
might be preferred to the other.

2 Discs @

Here are two circular cardboard discs. A number is written on the top of each
disc. There is another number written on the reverse side of each disc.

By tossing the two discs in the air and then adding together the numbers which
land uppermost, I can produce any one of the following four totals:

11, 12, 16, 17.
(a) Work out what numbers are written on the reverse side of each disc.

(b) Try to find a different solution to this problem.

3 Leagues

A top division has 22 teams. Each team plays all the other teams twice—once at
home, and once away. Games are usually played on Saturdays, but sometimes
on Wednesdays too. The season lasts about 35 weeks.

There is a proposal to expand this top division to 30 teams.

How many matches in all would be played, and how many matches would each
team play? What would the effect be on the length of the playing season?

©Shell Centre for Mathematical Education, Uniyersity of Nottingham, 1984.
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POND BORDERS

W T RIS
I Wlﬂ i,
Al(h. H\ : 'l |l(llu. W W/‘“ s 1

Joe works in a garden centre that sells square ponds and paving slabs to surround
them. The paving slabs used are all 1 foot square.

The customers tell Joe the dimensions of the pond, and Joe has to work out how
many paving slabs they need.

* How many slabs are needed in order to surround a pond 115 feet by 115 feet?

* Find a rule that Joe can use to work out the correct number of slabs for any
square pond.

*  Suppose the garden centre now decides to stock rectangular ponds.
Try to find a rule now.

Some customers want Joe to supply slabs to surround irregular ponds like the

one below:—
1 T (This pond needs 18 slabs. Check that you agree).
4 ft
Try to find a rule for ﬁndmg the number of slabs
needed when you are given the overall dimensions
(in this case 3 feet by 4 feet).
k— 3 ft —1 Explain why your rule works.

©Shell Centre for Mathematical Education, University of Nottingham, 1984.
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POND BORDERS. . . PUPIL’S CHECKLIST

Try some simple cases

*

Try finding the number of slabs needed for some
small ponds.

Be systematic

Don’t just try ponds at random!

Make a table * This should show the number of slabs needed for
different ponds. (It may need to be a two-way
table for rectangular and irregular ponds).

Spot patterns *  Write down any patterns you find in your table.

(Can you explain why they occur?)
Use these patterns to extend the table.
Check that you were right.

Find a rule

Either use your patterns, or look at a picture of the
situation to find a rule that applies to any size
pond.

Check your rule

Test your rule on small and large ponds.
Explain why your rule always works.

©Shell Centre for Mathematical Education, University of Nottingham, 1984.
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THE “FIRST TO 100> GAME

This is a game for two players.

Players take turns to choose any whole number from 1 to 10.
They keep a running total of all the chosen numbers.

The first player to make this total reach exactly 100 wins.

Sample Game:

Player 1’s choice | Player 2’s choice Running Total
10 10
5 15
8 23
8 31
2 33
9 42
9 51
9 60
8 68
9 77
9 86
10 96
4 100

So Player 1 wins!

Play the game a few times with your neighbour.
Can you find a winning strategy?

* Try to modify the game in some way, e.g.:
— suppose the first to 100 loses and overshooting is not allowed.
— suppose you can only choose a number between 5 and 10.

©Shell Centre for Mathematical Education, University of Nottingham, 1984.
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THE “FIRST TO 100> GAME. . . . PUPIL’S CHECKLIST

Try some simple cases *  Simplify the game in some way:
e.g.:— play “First to 20”
€.g.:— choose numbers from 1 to 5

e.g.:— just play the end of a game.

Be systematic * Don’t just play randomly!
*  Are there good or bad choices? Why?

Spot patterns *  Are there any positions from which you can
always win?
* Are there other positions from which you
can always reach these winning positions?

Find a rule *  Write down a description of “"how to always
win this game™. Explain why you are sure it
works.

* Extend your rule so that it applies to the
“First to 100 version.

Check your rule * Try to beat somebody who is playing
according to your rule.

* Can you convince them that it always works?

Change the game in some way * Can you adapt your rule for playing a new
game where:

— the first to 100 loses, (overshooting is not
allowed)

— you can only choose numbers between 5
and 10.

©Shell Centre for Mathematical Education, University of Nottingham, 1984.
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SORTING

50 red and 50 blue counters are placed alternately in a line across the floor:
RBRBRBR . . . RB

> BOBOBOW DB«

By swapping adjacent counters (see arrows) they have to be sorted into 2
groups, with all the reds at one end and all the blues at the other:
RRR ... RRRBBB ... BBB

bW OO OO C

*  What is the least number of moves needed to do this?
How many moves are needed for n red and n blue counters?

* What happens when the counters are placed in different starting formations:
For example RRBBRRBBRRBB . . . RRBB
or RBBRRBBRRBB . . . RBBR

* What happens when there are red, blue and green counters arranged
RBGRBG . . . RBG

What happens with 4 colours?
What happens with m colours?

Invent and explore your own arrangement of counters.
Write about your findings.

©Shell Centre for Mathematical Education, University of Nottingham, 1984.
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SORTING. . . PUPIL’S CHECKLIST

Try some simple cases

Try finding the number of moves needed for
just a few counters.

Be systematic

Try swapping counters systematically.

Find a helpful representation

If you are unable to use real counters, can
you find a simple substitute?

Can you use the simple cases you have
already solved, to generate further cases by
adding extra pairs of counters rather than
starting from the beginning each time?

Make a table

Make a table to show the relationship
between the number of counters and the
number of swaps needed.

Spot patterns

Write about any patterns you find in your
table.

(Can you explain why they occur?)
Use these patterns to extend the table.
Check that you were right.

Find a rule

Use your patterns, or your representation,
to find a rule that applies to any number of
counters.

Check your rule

Test your rule on small and large numbers of
counters.

Try to explain why your rule must always
work.
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PAPER FOLDING

For this investigation, you will need a scrap of paper.
Fold it in half, and then in half again. In both cases you should fold left over
right. Open it out and look at the folded creases:

first fold

second fold

now unfold:

You should see 3 creases — one “‘up’” and two “"down”.

* Now suppose you were able to fold your paper strip in half, left over right, 6
times, and then unfold it completely.
Predict the total number of creases you would get.
How many of these are “up” creases and how many are “*down’’?
What order would these creases come in?

* Explain how you can predict the number and order of creases for 7,
8, . .. folds.

* Try folding the paper in a different way and explore the patterns in the
positioning and number of your creases. Write about your fmdmgs
For example, here is a tricky two-step case .

Left to right then and and
Bottomtotop . . . again . . . unfold . . . (gasp!)

i 1

‘ /{W

1
!
|
. b - - -
]
]
s

I._..---
P | ey

P

-—-ut-o-—h--

.-..-.-1.---

Any patterns?
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PAPER FOLDING. . . PUPIL’S CHECKLIST

Try some simple cases

It is very difficult to fold a normal sheet of
paper in half 6 times. (Just think how thick it
will be!), so try just a few folds first.

Be systematic

Make sure that you always fold from left to
right — don’t turn your paper over in
between folds!

Find a helpful representation

Invent symbols for “up™ and “down”
creases.

Use your symbols to record your results.

Make a table

Make a table to show the relationship
between the number of times the paper is
folded and the number of upward and
downward creases, and also the order in
which these creases occur.

Spot patterns

Write about any patterns you find in your
table. Can you explain why they occur?
Use these patterns to extend the table.

Check that you were right.

Find a rule

Use your patterns to find rules that apply to
any number of folds.

Check your rule

Test your rules on large and small numbers
of creases.

Try to explain why they work.

Extend the problem

Invent your own system of folding.
Try to predict what will happen, then check
to see if you were right.
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I

Q and “' represent two

tanks armed with laser
beams that annihilate
anything which lies to the
North, South, East or West
of them. They move
alternately. At each move a
tank can move any distance
North, South, East or West
but cannot move across or
into the path of the
opponent’s laser beam. A
player loses when he is
unable to move on his turn.

LASER-WARS

.................

laser beams)

* Play the game on the board below, using two objects to represent the tanks.
Try to find a winning strategy, which works wherever the tanks are placed to

start with.

* Now try to change the game in some way . . .
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KAYLES

This is like an old 14th century game for 2 players, in which a ball is thrown at a

number of wooden pins standing side by side:

The size of the ball is such that it can knock down either a single pin or two pins
standing next to each- other. Players alternately roll a ball and the person who

knocks over the last pin (or pair of pins) wins.

Try to find a winning strategy. (Assume that you can always hit the pin or pins

that you aim for, and that no one is ever allowed to miss).

Now try changing the rules . . .

©Shell Centre for Mathematical Education, University of Nottingham, 1984.
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CONSECUTIVE SUMS

The number 15 can be written as the sum of
consecutive whole numbers in three different
ways:

15=7+8

15=1+2+3+4+5

15=4+5+6

The number 9 can be written as the sum of
consecutive whole numbers in two ways:
9=2+3+4
9=4+5
Look at numbers other than 9 and 15 and find
out all you can about writing them as sums of
consecutive whole numbers.

Some questions you may decide to explore . . .

Which numbers cannot
be written as
consecutive sums?

What kinds of numbers can be
written as the sum of
2or3ordor. ..
consecutive numbers?

How many ways
can various numbers
be produced?

\ Spaces for your own questions f

when you think of any.

Write about your discoveries.
Try to explain why they occur.
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THE PAINTED CUBE
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Imagine that the six outside surfaces of a large cube are. painted black. This

large cube is then cut up into 4,913 small cubes. (4,913

*

How many of the small cubes have:

0 black faces?

1 black face?
2 black faces?

3 black faces?

4 black faces?

5 black faces?

6 black faces?

Now suppose that you cut the cube into #° small cubes . . .

*
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b4

[IIIII

2

*

0—0; 1—0; 0—1; 2—0;

‘At the final whistle, the score was 2—2”

1—0,
1—0,
1—0,
0—1,
0—1,
0—1,

1—1;

SCORE DRAWS

2—0,
1—I1,
1—1,
1—1,
1—I1,
0—2,

2—1;

2—1,
2—I1,
1—2,
2—1,
1—2,
1—2,

What was the half time score? Well, there are nine possibilities:
2—2; 1—2; 02

*  Now explore the relationship between other drawn matches, and the
number of possible half-time scores.

There are six possible ways of reaching a final score of 2—2:

2—2
2—2
22
2—2
2—2
2—2

How many possible ways are there of reaching other drawn matches?

*  Finally, consider what happens when the final score is not a draw.
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CUPBOARDS

A factory sells cupboards in two standard widths: 5 dm and 7 dm.
(Note: 1 dm=1 decimetre=10 centimetres).

By placing combinations of these cupboards end to end, they can be fitted into
rooms of various sizes.

For example, two 5 dm and three 7 dm cupboards can be fitted into aroom 31 dm
long.
31

—1 N T N R SO O | {
11Tt

| S TN U T O
L

7 4 cupboards | 5 ;I

How can you fit a room 32 dm long?

i

Explore rooms with different lengths. Which ones can be fitted exactly with
cupboards. Which cannot?

Suppose the factory decides to manufacture cupboards in 4 dm and 7 dm
widths. Which rooms cannot be fitted now?

Investigate the situation for other pairs of cupboard sizes.
Can you predict which rooms can or cannot be fitted?
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NETWORKS

(D)
1

A network is a set of lines (or ‘“arcs”), junctions (or “nodes”) and spaces
(or “‘regions’’) which compose a shape.

The network shown above is composed of 12 arcs, 7 nodes (marked with blobs)
and 7 regions (these are numbered—notice that we have included the outside as
aregion).

Networks can be of two kinds:
Connected, like this . . . or disconnected like this . . .

9

Draw your own connected networks. Find a rule connecting the number of arcs,
nodes and regions. Try to explain why your rule works.

Can you adapt your rule to work for disconnected networks?

A cube has 6 faces, 8 corners (or vertices) and 12 edges.

Explore the relationship between the number of faces, vertices and edges for
other solid shapes.

Can you find any exceptional cases?

L
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FROGS

Al S0

& ’)J)

These two frogs can change places in three moves

Rules
~Ta
Move 1 (g? ” * A frog can either hop onto an adjacent

square, or jump over one other frog to
the vacant square immediately beyond
g ——— .

Move 2 .”‘J (3? N it.

* The white frogs can only move from
=
Move 3 ”

-y left to right the black frogs can only
G? move from right to left.

The frogs shown below can be interchanged in 15 moves. Explain how.

F|F & (P w

How many moves would be needed to interchange 20 white and 20 black frogs?
— nwhiteand nblack frogs?

Now suppose that there are an unequal number of black and white frogs.
These frogs can be interchanged in 11 moves. Explain how.

F | W

How many moves are needed to interchange 15 white and 20 black frogs?
— nwhite and m black frogs?
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You will need a supply of
dotty paper. .

The quadrilateral shown in
this diagram has an area of
162 square units.

The perimeter of the
quadrilateral passes through9 -
dots.

13 dots are contained within
the quadrilateral.

Now draw your own shapes and try to find a relationship between the area, the
number of dots on the perimeter and the number of dots inside each shape.

Try to find a similar result for a triangular dot lattice.
(You will of course have to redefine your unit of area).
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DIAGONALS

A diagonal of this 5X7 rectangle passes through 11 squares.

These have been shaded in the diagram.

* Can you find a way of forecasting the number of squares passed through if
you know the dimensions of the rectangle?

* How many squares will the diagonal of a 1000x 800 rectangle pass through?
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THE CHESSBOARD

* How many squares are there
on an 88 chessboard?

TTTHITTT
saa=les oy

(Three possible squares are

shown by dotted lines).

-

* How many rectangles are -
there on the chessboard?

Lz g
=

* Can you generalise your

results for an nXn square?

i T

i
d
H
o
J
p

YR PO XNy S gy )

i
4
4

* How many triangles are
there on this 8 X8 grid?

How many point upwards?

How many point down-
wards?

* Look for other shapes in this
grid and count them.
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THE SPIRAL GAME

o
¢
.
o

DI

This is a game for two players. Place a counter on the dot marked “*|”". Now take
it in turns to move the counter between 1 and 6 dots along the spiral, always
inwards. The first player to reach the dot marked “y” wins.

Try to find a winning strategy.

Change the rule for moving in some way and investigate winning strategies.

©Shell Centre for Mathematical Education, University of Nottingham, 1984.
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ogg %OO
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This is a game for 2 players.
Arrange a pile of counters arbitrarily into 2 heaps.

Each player in turn can remove as many counters as he likes from one of the
heaps. He can, if he wishes, remove all the counters in a heap, but he must take
at least one.

The winner is the player who takes the last counter.
Try to find a winning strategy.

Now change the game in some way and analyse your own version.
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“FIRST ONE HOME”’

M
4——————-[".

"nNISH

This game is for two players. You will need to draw a large grid like the one
shown, for a playing area.

Place a counter on any square of your grid.

Now take it in turns to slide the counter any number of squares due West, South
or Southwest, (as shown by the dotted arrows).

The first player to reach the square marked ““Finish” is the winner.

I
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PIN THEM DOWN!

A game for 2 players.

Each player puts counters of his colour in an end
row of the board. The players take it in turns to slide
one of their counters up or down the board any
number of spaces.

No jumping is allowed. The aim is to prevent your
opponent from being able to move by pinning him
to the wall.

SOSEEIRI
52520 IC0KN ~'~‘ »

Can you find a winning strategy?

IL
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THE ‘“HOT FAT TUNE” GAME

This is a game for two players.
Take it in turns to remove any one of the nine cards shown above.

The first player to hold three cards which contain the same letter is the winner.

Try to find a winning strategy.
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DOMINO SQUARE

This is a game for 2 players.
You will need a supply of 8 dominoes or 8 paper rectangles.

Each player, in turn, places a domino on the square grid, so that it covers two
horizontally or vertically adjacent squares.

After a domino has been placed, it cannot be moved.
The last player to be able to place a domino on the grid wins the game.

For example, this board shows the first five moves in one game:

.

(It is player 2’s turn. How
can he win with his next
move?)

Try to find a winning strategy.
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THE TREASURE HUNT

This is a game for two players.

You will need a sheet of graph paper on which a grid has been drawn, like the
one below. This grid represents a desert island.

1000

500 w—g}e

0 500 1000

One player “buries” treasure on this island by secretly writing down a pair of
coordinates which describes its position.

For example, he could bury the treasure at (810,620).

The second player must now try to discover the exact location of the treasure by
“digging holes”, at various positions.
For example, she may say “I dig a hole at (200,200)”.

The first player must now try to direct her to the treasure by giving clues, which
can only take the form:

“Go North”, “Go South”, ““Go East”, “Go West”, or “Go South and East” etc.
In our example, the first player would say ‘“Go North and East”.

* Take it in turns to hide the treasure.
*  Play several games and decide who is the best ‘“‘treasure hunter”.

*  How should the second player organise her “hole digging” in order to
discover the treasure as quickly as possible?

*  What is the least number of holes that need to be dug in order to be sure of
finding the treasure, wherever it is hidden?

|
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NOTES ON MARKED SCRIPTS

Script A
Emma In part (iii) Emma was awarded only 1 mark out of 2 since her answer did
not explain clearly that she had added the numbers from 1 to 11.

In part (iv) she was given 1 mark out of 2 as her answer showed evidence of a
systematic approach although it was incomplete.

Script B
Mark In part (i) Mark’s answer was correct and although no working was shown
he was given both marks.

Although Mark’s diagram for part (ii) is correct, there are three errors in
his solution. He should have had 66 cubesx4+12 and, in addition, his
calculation of 45X4+11 is incorrect. He was given 1 mark out of 4.

Script C

Ian Ian has misunderstood the question and assumed the tower to have a
hollow middle.
In part (i) his answer is therefore wrong and he gets no marks.
In part (ii) he has made two errors: he assumed the tower has a hollow
middle and has 13 layers. He was therefore given 2 marks out of 4.
In part (iii), his explanation of his calculation is not complete and so he
scores 1 mark out of 2.

In part (iv) his answer is not correct and scores no marks.

Script D

Colin  In part (ii) Colin has made two errors in multiplication for h=11 and h=12.
Since each answer has been worked out independently using c=hXw only
the error in =12 need be penalised. So Colin scores 3 marks out of 4.
In part (iii) he scored both marks for a clear, complete and correct
explanation of his method.
In part (iv) the three formulae on the left hand side are correct and
sufficient to solve the problem, although they are not organised
systematically. He was therefore awarded 1 mark out of 2.

Script E

Peter  Inpart (ii) there is some doubt as to how Peter has worked out his answer. It
may be that he has attempted to build onto the original tower and
calculated the number of extra cubes needed but has forgotten to add on the
66. We are giving him the benefit of the doubt by taking this view although
this may mean a slightly inflated mark. He was awarded 3 marks out of 4 for
part (ii).

In part (iii) his explanation of his method is not very clear and he was
awarded 1 mark out of 2.

Script F

Paul Paul’s answer is of a very high standard. He was awarded 10 marks out of 10
despite the algebraic error in the last part.
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SCRIPTF PAUL (continued)

{nmglﬁ fhon o fle, fmaha ot triasgube wombes fr e ot ofPhe huver,

D S S . Ha-}?gﬂ_ . 32 . 66
2 2 2

Ko Emdtply Hhis nombor by 4.
624 - 24
-~ Now add fwelve -
A4 +R =236 blods

N B

4 T abwer D qles high

tha mdde 1 blecks; yoo a W wdth 4 bldes oF -1 hgh Thon
{)’zﬁewjﬁa equilion .
':r.’*rl n(! +(n-1) 1 ,m

Neuo mulfply Thic nuvbe By 4.
&-]}14 {4n-1)

Then add M b the htal. 2

p3
‘4")'” 4'{4"'” + T = NMIER (¢ RoCes NGepep TO MOk A
SKELETOV TowsR oF N Bl HuH.

©Shell Centre for Mathematical Education, University of Nottingham, 1984.
62 (163)



SCRIPTF PAUL
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SCRIPTE PETER
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SCRIPTD COLIN
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SCRIPT A EMMA (continued)
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SCRIPTA EMMA
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SCRIPTF PAUL (continued)
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SCRIPTE PETER
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SCRIPTD COLIN

Seraleten Towes:
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SCRIPT C IAN
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SCRIPTB MARK
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SCRIPT A EMMA (continued)
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SCRIPTA EMMA

SKaEToN TQWER
D N inc\udmg ¥e antra perpendicular column  gach ! Sicle Fort!
A
“ Pl
e
Carsists of 13 cwbes - N x b = 60,

0 +6 - 166] This & the no. of cubts Mezded

The S‘up absve 13 e tenhal  colurmn -

20
Cah  arm  wowld  msisk of -
i
66 x4 = &(li
26y
-

W4 + 1L = [270). Bods. would equal a fower which is 12
b high - )
) | jusl' o warked oul the no. of eubes for 1 arm Eg sfuﬁ‘mg
ar D obes hgh and decreasing down fo 1. I mulhplied dhis by 4
as tere are & arns, | Phen added the foml heghf of the
fower en b ths resulk-
§- R, eadt am starts 1 wbe down | wowd fisHy wnte

I

e I S

) have ckaded o hy same smphr eanples  hy see ¢
con  Pd sore WN\S

continued

©Shell Centre for Mathematical Education, University of Nottingham, 1984.
47 (163)



SKELETON TOWER . . . MARKING SCHEME

)

(if)

(iii)

(iv)

Showing an understanding of the problem by dealing correctly with a simple
case,

Answer: 66
2 marks for a correct answer (with or without working).

Part mark: Give 1 mark if a correct method is used but there is an arithmetical
error.

Showing a systematic attack in the extension to a more difficult case.
Answer: 276

4 marks if a correct method is used and the correct answer is obtained.

Part marks: Give 3 marks if a correct method is used but the work contains an
: arithmetical error or shows a misunderstanding (e.g. 13 cubes in
the centre column).

Give 2 marks if a correct method is used but the work contains
two arithmetical errors/misunderstandings.

Give 1 mark if the candidate has made some progress but the
work contains more than two arithmetical errors/
misunderstandings.

Describing the methods used.

2 marks for a correct, clear, complete description of what has been done
providing more than one step is involved.

Part mark: Give 1 mark if the description is incomplete or unclear but
apparently correct.

Formulating a general rule verbally or algebraically.

2 marks for a correct, clear, complete description of method.

Accept “number of cubes=n(2n—1)" or equivalent for 2 marks. Ignore any
errors in algebra if the description is otherwise correct, clear and complete.

Part mark: Give 1 mark if the description is incomplete or unclear but shows
that the candidate has some idea how to obtain the result for any
given value of n.

Haow
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SKELETON TOWER

(i) How many cubes are needed to build this tower?
(i) How many cubes are needed to build a tower like this, but 12 cubes high?
(iii) Explain how you worked out your answer to part (ii).

(iv) How would you calculate the number of cubes needed for a tower n cubes
high?
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A TREASURE HUNT PROBLEM

This is a game for two players.

The diagram below represents an island, and each dot represents a possible
location for some buried treasure. (In this case there are 30 possible hiding
places).

3

2

1 23 456 7 8 910
One player has to guess the location of the treasure, and the other has to provide
a ““clue” after each guess, which can only be of the following kind:

After the first guess, the clue is either ““‘warm” or ““cold’’ according to whether
the treasure is located at a neighbouring point or not. -

After each succeeding guess, the clue is either “‘warmer”, “colder”, or ‘“‘same
temperature’’, depending on whether the guess is closer to, further away
from or the same distance from the treasure as the previous guess.

The aim is to discover the treasure with as few guesses as possible.

* In the sample game shown below, the first guess, G1, was (8,3). The clue

given was ‘‘cold”, so the treasure is not on any neighbouring points (shown

witha ).
2 .. . . . .00 o)
1 g .

1 23 456 7 89 10
The second guess, G2, was (8,1) . . .
Show that, wherever it is buried, the treasure can always be located with
a total of 5 guesses (including G1 and G2). Is this the minimum number?

* Now try to find the minimum number of guesses needed for a different

grid . ..

*

What is the best ““‘guessing’ strategy?

L
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